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Journal of
Applied

Mechanics Memoriam

I n M e m o r i a m : E r a s t u s H . L e e

Erastus H. Lee, professor emeritus of Stanford University and
RPI, and a prominent researcher, with fundamental contributions
to plasticity, viscoelasticity and wave propagation, died at the age
of 90 on May 17, 2006 in Lee, New Hampshire.

Ras Lee was born on February 2, 1916, in Southport, England.
He graduated from Cambridge University in 1937 with a First
Class Honours degree in mechanical sciences and mathematics.
After a year of postgraduate study at Cambridge with Professor C.
E. Inglis, Ras was awarded a fellowship from the Commonwealth
Fund of New York to study with Professor Stephen P. Timoshenko
at Stanford University. There he met Shirley, and later completed
his Ph.D. and married her, both in 1940. Immediately thereafter,
he became involved in the British war effort. He worked first as a
progress officer in the British Purchasing Commission in New
York and later in the British Air Commission in Washington. Ras
was responsible for planning aircraft deliveries from U.S. compa-
nies and for specifying modifications required to meet British
needs. He and Shirley returned to England during the war, where
Ras first worked at the Ordnance Board and then at the Ministry
of Supply Armament Research Department. He was elected a Fel-
low of his College, Gonville and Caius, Cambridge, in 1944, and
became Assistant Director in charge of the Technical Engineering
Section of the Production Department of the newly established
British Atomic Energy Authority in 1946.

After an offer from Professor William Prager, Lee and his fam-
ily returned to the United States in 1948, where he was a Profes-
sor of Applied Mathematics at Brown University for 14 years. He
served as Chairman of the Applied Mathematics Division for five
years. During these years, faculty members in the Divisions of
Applied Mathematics and Engineering, which included Dan
Drucker, Harry Kolsky, Allen Pipkin, Paul Symonds, Ronald Riv-
lin, Dick Shield, and Eli Sternberg in addition to Prager and Lee,
made Brown the worldwide center for research in solid mechan-
ics. In 1962, Ras was appointed as a Professor in the Division of
Applied Mechanics and the Department of Aeronautics and Astro-
nautics at Stanford University, joining Norman Goodier, Wilhelm
Flügge, Nick Hoff, and Miklos Hetenyi in the widely acclaimed
Stanford applied mechanics group. Almost every graduate student
in solid mechanics during that time took Lee’s sequence of three
courses �each two quarters long� in nonlinear continuum mechan-
ics, viscoelasticity, and plasticity. He remained at Stanford for 20
years �1962–1982�, taking mandatory retirement at the age of 65.
For the last 10 years of his professional career, Ras was the Ro-
salind and John J. Redfern, Jr. Chair Professor of Engineering at
Rensselaer Polytechnic Institute.

In his early work, Lee made fundamental contributions to the
development of solutions for elastic-plastic problems and slip-line
methods for metal forming processes. This includes a series of
papers, written in England with R. Hill and S. J. Tupper, on the
theory of the autofrettage process, wedge indentation in ductile
metals, and compression of a block between rough plates. This
was followed by research with his students at Brown on the stress
discontinuities in plane plastic flow, the analysis of plastic flow in

Erastus H. Lee
February 2, 1916–May 17, 2006

deeply notched bars, and discontinuous machining and chip for-
mation. At Brown, Lee also made significant contributions to the
analysis of boundary value problems in the theory of plastic wave
propagation, including the determination of moving plastic-elastic
boundaries, known as loading and unloading waves, with particu-
lar application to normal impact between a cylinder and rigid
target at rest. Extending his research interests to polymers, he
contributed significantly to the development of solution methods
for viscoelastic stress analysis, by reducing them to more tractable
elasticity problems, which is now known as the correspondence
principle. He studied the effects of residual stresses and tempera-
ture variations on viscoelastic response �the well-known time-
temperature shift�, viscoelastic contact problems, and viscoelastic
wave propagation. His research papers in this field are regularly
referenced in contemporary publications, monographs, and books
devoted to viscoelasticity.

Lee continued his research on inelastic wave propagation at
Stanford, by developing a finite-strain elastic-plastic theory with
application to plane-wave analysis, as arises in dynamic plate im-
pact problems, which culminated in his 1969 paper “Elastic-
Plastic Deformation at Finite Strain,” published in the Journal of
Applied Mechanics. Through this research, he developed a frame-
work for the constitutive analysis of large elastic-plastic deforma-
tions based on the multiplicative decomposition of the deforma-
tion gradient �F�FeFp�, now commonly referred to as Lee’s
decomposition. This decomposition had a great impact on subse-
quent developments of elastoplastic constitutive theories for poly-
crystalline materials and single crystals. With his students at Stan-
ford and RPI, Lee applied his decomposition to develop rate-type
theories of elastoplastic deformation at finite strain for both iso-
tropic and anisotropic materials. His other contributions to me-
chanics include studies of shock waves in elastic-plastic solids,
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wave propagation in composite materials with periodic structure,
elastic-plastic stress and deformation analysis of metal-forming
processes, providing the first calculations of residual stresses, and
the modeling of anisotropic strain hardening.

Lee was elected to the National Academy of Engineering in
1975 and was awarded the Timoshenko Medal in 1976, in recog-
nition of his distinguished contributions to the field of applied
mechanics. He was a Fellow of the American Academy of Me-
chanics, and a Life Fellow of the American Society of Mechanical
Engineers, with frequent publications in the Journal of Applied
Mechanics throughout his career. With contributions from his col-
leagues and former students, an anniversary volume, entitled Top-
ics in Plasticity, was published in 1991 by AM Press on the oc-

casion of his 75th birthday. He delivered invited lectures
throughout the world; he was a Guggenheim Fellow in 1975 and
an Alexander von Humboldt Fellow in 1986.

Ras Lee is survived by his four children and four grandchildren.
He was predeceased by his wife, Shirley. Ras had a delightful
personality and was well liked and admired by his many col-
leagues. He also inspired admiration and gratitude among his
many post-doctoral and graduate students.

Ras Lee will be sorely missed, but his mechanics legacy will
live on.

Vlado Lubarda
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A New Microcontact Model
Developed for Variable Fractal
Dimension, Topothesy, Density of
Asperity, and Probability Density
Function of Asperity Heights
In the present study, the fractal theory is applied to modify the conventional model (the
Greenwood and Williamson model) established in the statistical form for the microcon-
tacts of two contact surfaces. The mean radius of curvature �R� and the density of
asperities ��� are no longer taken as constants, but taken as variables as functions of the
related parameters including the fractal dimension �D�, the topothesy �G�, and the mean
separation of two contact surfaces. The fractal dimension and the topothesy varied by
differing the mean separation of two contact surfaces are completely obtained from the
theoretical model. Then the mean radius of curvature and the density of asperities are
also varied by differing the mean separation. A numerical scheme is thus developed to
determine the convergent values of the fractal dimension and topothesy corresponding to
a given mean separation. The topographies of a surface obtained from the theoretical
prediction of different separations show the probability density function of asperity
heights to be no longer the Gaussian distribution. Both the fractal dimension and the
topothesy are elevated by increasing the mean separation. The density of asperities is
reduced by decreasing the mean separation. The contact load and the total contact area
results predicted by variable D, G*, and � as well as non-Gaussian distribution are
always higher than those forecast with constant D, G*, �, and Gaussian distribution.
�DOI: 10.1115/1.2338059�

1 Introduction

In order to analyze tribological problems such as sealing �1�,
thermal and electrical contact resistance �2,3�, and friction and
wear �4� between two rough surfaces, a deep understanding of the
deformation behavior of contacting asperities and an accurate
characterization of the contact is fundamentally important.

The field of microcontacts was pioneered by Greenwood and
Williamson �the GW model� �5�, with their elastically basic con-
tact model, or “asperity-based model.” The plastic deformation of
asperities has also been studied by Abbott and Firestone �6�, who
constructed their “surface microgeometry model” for the plastic
deformation; they assumed that the real contact area of a rough
surface with a rigid and flat surface is the geometrical intersection
of the flat with the undeformed profile of the asperity, and the
contact pressure is equal to the flow pressure.

Chang et al. �7� proposed an elastoplastic asperity model �the
Chang, Etsion, and Bogy model� for the analysis of contact sur-
faces. Based on the concept of volume conservation, they con-
nected the limiting cases of the purely elastic and fully plastic
deformations without considering the elastoplastic deformation re-
gime. Zhao et al. �8� presented an elastic-plastic asperity micro-

contact model �the Zhao model�, which was modeled as logarith-
mic and fourth-order polynomial functions for contact between
two nominally flat surfaces.

The finite element method was used to solve the elastoplastic
contact of a single asperity �9–12�. An elastic-plastic finite ele-
ment model for the frictionless contact of a deformable sphere
pressed by a rigid flat was presented by Kogut and Etsion �13�.
The evolution of the elastic-plastic contact with increasing inter-
ference was analyzed, revealing three distinct deformation re-
gimes that range from fully elastic through elastoplastic to a fully
plastic contact interface.

Nevertheless, all of these studies mentioned above were based
on the assumptions made by Greenwood and Williamson �5�.
They assumed that the model surface was composed of hemi-
spherical asperities with the same radius. The heights of summits
of the asperities varied randomly in Gaussian distribution, and the
interactions between neighboring asperities on the same surface
are neglected. Thus, the mean radius of curvature of asperities, R,
and the density of asperities, �, are assumed invariant, and the
probability density function of asperity heights is also assumed to
be always in the Gaussian distribution. However, this is unrealistic
when two rough surfaces have contact deformations. The motiva-
tion of this study tries to improve these inappropriate assumptions
made in the GW model.

Another branch for the study of microcontacts has developed
by applying the fractal theory. A rough surface has fractal-like
features; it has wiggly features over a large range of length scales
and sometimes does follow the self-similar hierarchy. Mathemati-
cal fractals follow self-repetition over all these length scales, so
rough surfaces have higher and lower length scale limits between
which the fractal behavior is observed. Majumdar and Bhushan
�14� and Bhushan and Majumdar �15� used scale-independent pa-
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rameters �fractal dimension D�, instead of using the conventional
statistical parameter, to describe the load contact of rough sur-
faces. A new fractal-based functional model for anisoptropic
rough surface developed by Blackmore and Zhou �16� was used to
devise and test two methods for the approximate computation of
the fractal dimension �2�D�3� of surfaces. A two-variable frac-
tal surface description was incorporated in a three-dimensional
elastic-plastic contact mechanics analysis by Yan and Komvopou-
los �17�. There are some other researchers who have studied mi-
crocontact with the self-affine fractal distribution of surface
roughness. Persson �18� developed a theory of rubber friction
when a rubber block slid over a hard rough surface with rough-
ness on many different length scales. The explicit results are pre-
sented for self-affine fractal surface with elastic and elastoplastic
considerations. Persson �19� further developed a theory of adhe-
sion between an elastic solid and a hard randomly rough substrate.
Zhang and Zhao �20� developed a theoretical model to describe
the adhesion between plastically deformable fractal surfaces
whose asperity heights conformed to a general distribution.

Nevertheless, all of the above studies related to the fractal
theory were conducted by assuming the fractal dimension and the
topothesy to be invariant with the mean separation, and the prob-
ability density function is assumed to be always in the Gaussian
distribution. However, in real circumstances the topography of
each surface will be continuously changed when two rough sur-
faces occur contact deformations. According to the experimental
results shown in the study of Othmani and Kaminsky �21�, surface
asperities after experiencing contacts of different separations were
found to be satisfied by a non-Gaussian probability density func-
tion. Their experimental results also provided the motivation for
Chung and Lin �22� to investigate the behavior of these contact
parameters varying with the mean separation. In their study, the
fractal dimensions of surface asperities at different interferences
were obtained on the basis of the experimental data of the number
of contact spots �N�a�� with their contact area larger than a, which
were reported in the study of Othmani and Kaminsky �21�. The
topothesy corresponding to its fractal dimension was thus deter-
mined from the relationship among the scaling coefficient Cp, the
fractal dimension D, and the topothesy G. This relationship was
established by the equivalence of the structure functions devel-
oped by two different ways. Instead of the fractal analyses on the
basis of the experimental results, fractal dimension D and to-
pothesy G varying with the separation of two contact surfaces are
now predicted purely by the theoretical model developed in the
present study. This model of variable fractal parameters is applied
to modify the conventional models established in the statistical

form for the microcontacts of two contact surfaces. The mean
radius of curvature �R� and the density of asperities ��� in the
present microcontact model are thus no longer taken as constants,
but taken as variables as a function of the related parameters in-
cluding the fractal dimension �D�, the topothesy �G�, and the
mean separation of two contact surfaces.

In the present study, the relationship between the fractal dimen-
sion and the mean separation is analyzed first. For a fractal sur-
face, the number of contact spots �N�a�� with their contact area
larger than a satisfies the power-law relation �23�. The slope of a
N�a�−a curve is thus equal to �1−D� /2. The relationship between
N�a� and a is determined purely by theoretical analyses. Through
the equality of the real contact area formulas expressed by two
different forms, the topothesies evaluated at different deformation
regimes can be expressed as a function of the fractal dimension
and the mean separation. A numerical scheme is then developed in
this study to incorporate these relationships to determine the con-
vergent values of fractal dimension and topothesy corresponding
to a given mean separation. The topographies of a surface ob-
tained from the theoretical prediction of different separations
show the probability density function �g� to be no longer in the
Gaussian distribution. In this model, the elastic-plastic microcon-
tact behavior of two rough surfaces is developed to investigate the
effect of variable radius of curvature �R�, density of asperity ���,
and non-Gaussian probability density function of asperity heights
�g� on the total contact area and the contact load.

2 Theoretical Analysis for Contact Surfaces
The contact of two rough surfaces �see Fig. 1� can be modeled

by a flat and smooth surface in contact with a rough surface. z is
the height of an asperity measured from the mean surface of as-
perity heights. The asperity interference � is given as

� = z − d �1�

where d denotes the separation between two contact surfaces. If
the mean radii of curvature of the asperities on surface 1 and
surface 2 are R1 and R2, respectively, the equivalent rough surface
can be expressed as having the radius of curvature, R, satisfying
1/R=1/R1+1/R2. ��1�0 and ��2�0 denote the standard deviations
of the asperity heights of surface 1 and surface 2 before contact
deformations occur, respectively. The standard deviation, �0, for
this equivalent rough surface before any contact deformation sat-
isfies �0=���1�0

2+ ��2�0
2.

Fig. 1 The schematic diagram of two contact surfaces with deformation
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2.1 Contacts Parameters at Elastic and Fully Plastic
Deformations. According to the Hertz theory, the elastic contact
area, ae, the elastic contact load, Fe, and the average contact pres-
sure, Pe, produced by a sphere with a radius of R in contact with
a smooth flat with an elastic interference, �, are given as �24�

ae = �R� �2�

Fe = 4
3ER1/2�3/2 �3�

Pe =
4

3

E

�
� �

R
�1/2

�4�

where E denotes the effective Young’s modulus of two solid con-
tact surfaces �surface 1 and surface 2� with the Young’s moduli,
E1 and E2, and the Poisson ratios,�1 and �2, respectively. It is
stated as

1

E
=

1 − �1
2

E1
+

1 − �2
2

E2

In the fully plastic deformation regime, the asperity’s contact
area, ap, the contact load, Fp, and the average contact pressure,
Pp, can be expressed as �24�

ap = 2�R� �5�

Fp = Hap �6�

Pp = H �7�

where H is the hardness of the softer material of two contact
solids.

2.2 The Critical Interference and Contact Parameters in
Elastoplastic Deformation Regime. The critical interference, �c,
which marks the transition from the elastic deformation to elasto-
plastic deformation, is given by �25�

�c = ��KH

2E
�2

R �8�

where the maximum contact pressure factor K is related to the
Poisson ratio ��� of the softer material. It is expressed as �8�

K = 0.454 + 0.41�

Kogut and Etsion �13� used a finite element method to solve the
elastoplastic contact problem of a single asperity and found that
the entire elastoplastic regime extends over the dimensionless in-
terference values in the range of 1�� /�c�110. The asperity’s
contact area, aep, the contact load, Fep, and the average contact
pressure, Pep, in the elastoplastic deformation regime are pre-
sented in a dimensionless form as �13�

aep

�R�c
= a1� �

�c
�b1

�9�

Fep

2/3KH�R�c
= a2� �

�c
�b2

�10�

Pep

H/2.8
= a3� �

�c
�b3

�11�

where a1 ,b1 ,a2 ,b2 ,a3 ,b3 are constants, they are summarized in
distinct elastoplastic regimes given in this study �13�.

2.3 Interference and Radius of Curvature of an Asperity
in the Fractal Model. The asperity interference, �, and the effec-
tive radius of curvature, R, of an asperity obtained by the fractal
analyses are given as �17�

� = 2�4−D�G�D−2��ln ��1/2��D−3�/2a�3−D�/2 �12a�

R =
2�D−4�G�2−D�a�D−1�/2

��D−1�/2�ln ��1/2 �12b�

where D�2�D�3� is the fractal dimension of the surface, G is
the topothesy, which is a height scaling parameter independent of
spatial frequency, a is the contact area of an asperity, and � rep-
resents a parameter that determines the density of frequency
shown in the surface asperities, chosen here to be 1.5 �17�. The
dimensionless topothesy, G*, and the dimensionless contact area,
a*, are normalized by the standard deviation, �0, as G*�G /�0
and a*�a /�0

2.
The dimensionless interference �*��*�� /�0� and the dimen-

sionless effective radius of curvature R*�R*�R /�0� can thus be
expressed in the fractal form as �23�

�* = 2�4−D�G*�D−2��ln ��1/2��D−3�/2a*�3−D�/2 �13a�

R* =
2�D−4�G*�2−D�a*�D−1�/2

��D−1�/2�ln ��1/2 �13b�

�* becomes �c
* if a* in Eq. �13a� is replaced by ac

*. Substitutions of
this �c

* expression and Eq. �13b� into Eq. �8� give ac
* as

ac
* = 	2�10−2D���D−4�G*�2D−4��ln ��� E

KH
�2
1/�D−2�

�14�

Asperities with a�ac are elastically deformed since they sat-
isfy the condition of ���c; whereas asperities with a	ac are thus
considered to be operating in the elastoplastic deformation, even
in the fully plastic deformation regime.

In the elastic deformation regime �� /�c�1�, the substitutions
of Eqs. �1� and �2� into Eq. �13b� give the expression of the
dimensionless radius curvature Re

*; in the first elastoplastic defor-
mation regime �1�� /�c�6�, the substitutions of Eqs. �1� and �9�
into Eq. �13b� give the expression of Rep1

* ; Similarly, in the second
elastoplastic deformation regime �6�� /�c�110�, the dimension-
less radius of curvature Rep2

* can be expressed. In the fully plastic
deformation regime �110�� /�c�, the substitutions of Eqs. �1� and
�5� into Eq. �13b� give the expression of Rp

*. The dimensionless
radii of curvature in the elastic, elastoplastic and fully plastic de-
formation regimes can be expressed in a general fractal form as

R*

= �1

8
�C1	22C2�D−4�G*2�2−D��z* − d*�C3�D−1�C4

�D−1��c
*C5�1−D�

�ln �� 
1/�3−D�

�15�

where z*�z /�0; d*� /�0; Re
*�Re /�0; Rep1

* �Rep1 /�0; Rep2
*

�Rep2 /�0; and Rp
* �Rp /�0. The parameters of C1, C2, C3, C4, C5

in Eq. �15� are constants, they are summarized in distinct defor-
mation regimes given in Table. 1. Equation �15� can be applied to
calculate the radii of curvature in different deformation regimes if
the fractal dimension D and the topothesy G*corresponding to an
interference are available.

2.4 Area Density of Asperities in a Fractal Surface. Define
� to be the area density of asperities. According to the study of
Nayak �26�, the � parameter can be expressed as

Table 1 The parameters of C1 ,C2 ,C3 ,C4 ,C5 in Eq. „15…

Deformation regime C1 C2 C3 C4 C5

Re
*�� /�c�1� 0 1 1 1 0

Rep1
* �1�� /�c�6� 0 1 1.136 0.93 0.136

Rep2
* �6�� /�c�110� 0 1 1.146 0.94 0.146

Rp
*�� /�c	110� 1 0 1 1 0
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� =
1

6��3

m4

m2
�16�

where m2, m4 are the second, and fourth moments of the power
spectral density, respectively. The relationship between m2, m4
and the fractal parameters G and D can also be obtained from the
power spectrum of the surface profile, and they are given as fol-
lows �27�:

m2 =
1

2

�3 − D�
�D − 2�sin���2D − 5�/2�
�2D − 5�

�G

l
�2�D−2�

�17�

m4 =
1

2G2

�3 − D�
�D − 1�sin���2D − 5�/2�
�2D − 5�

�G

l
�2�D−1�

�18�

where l is the resolution of the surface measuring instrument.
Substitutions of Eqs. �17� and �18� into Eq. �16� give

� =
1

6��3

�D − 2�
�D − 1�

l−2 �19�

According to Eq. �19�, it is obvious that the asperity density � has
its magnitude dependent upon the instrument resolution l and the
fractal dimension D. The l parameter is independent of the contact
procedure, it can thus be obtained from Eq. �19� by substituting
the initial values of the fractal dimension �D0� and the area density
of asperities ��0� before surface contacts.

2.5 Non-Gaussian Probability Density Function Varying
With Mean Separation. The topographies obtained from the ex-
perimental results �21� of surface contacts at different separations
�or different interferences� are generally varied by the non-
Gaussian distribution. The probability density function of surface
asperities actually varies with the mean separation of two surfaces
and thus is expressed as a function of z*. The equation for the
non-Gaussian probability density function, g�z*�, can be expressed
as �26�

g�z*� =
�3

2��e−C1z*2	3�2�� − 3�
��2 
1/2

z* +
3�2�

2��
e−0.5z*2

�1 + erf ���z*2 − 1�

+ �2�	 ��

3��� − 1�
1/2

exp�− 	 ���z*2�
2��� − 1�
�1 + erf �� � �20�

where erf�x� is the error function and �� denotes the bandwidth
parameter and it is given as

�� =
m0m4

m2
2 �21�

where m0, m2, m4 are the zeroth, second, and fourth moments of
the power spectral density, respectively. The expressions for m2
and m4 have been shown in Eqs. �17� and �18�. C1, �, and � in Eq.
�20� are written as

C1 =
��

�2�� − 3�
; � = 	 3

2�2�� − 3�
1/2

z*;

� = 	 3

2��� − 1��2�� − 3�
1/2

z*

When ��→, the asperity heights show a Gaussian distribution.
The expression for g�z*� is noticed to be dependent upon the pa-
rameter ��. However, the zeroth moment, m0, which results from
the analysis of the power spectrum variations, is expressed as �27�

m0 =
G2�D−2�L2�3−D�

2 sin ���2D − 5�/2�
�2D − 5�
�22�

Therefore, the substitutions of Eqs. �22�, �17�, and �18� into Eq.
�21� give

�� =
�D − 2�2

�3 − D��D − 1�
�L

l
�2�3−D�

�23�

where L denotes the sample length �L=10−5 m in the present
study�. According to Eq. �23�, the bandwidth parameter, ��, can
be expressed as a function of the fractal dimension D. The fractal
dimension D is varied with the mean separation of two surfaces
will be developed in Sec. 2.6. Therefore, its value at different
mean separation can thus be obtained. The distribution form of
probability density function, g�z*�, varying with the mean separa-
tion of two surfaces can be predicted in the theoretical method.

2.6 Relationship Between Fractal Dimension „D… and
Mean Separation „d*

…. Define the profile dimension of a fractal
surface as Ds and the surface dimension as D. In his study of the
geomorphology of the Earth, Mandelbrot �28� found that the cu-
mulative size distribution of islands on Earth’s surface follows the
power law, N�a��a−Ds/2, where N is the total number of islands
with area larger than a, and Ds is related to the surface dimension
D by D= �Ds+1�. For a fractal surface, the number of contact
spots �N�a*�� with their contact area larger than a* satisfies the
following power law relation �25�

N�a*� � B�a*��1−D�/2 �24�

If N�a*�−a* plot in the log-log form can be obtained from the
experimental results of N�a*� and a*, the slope of a N�a*�−a*

curve is thus equal to �1−D� /2. Then, the fractal dimension D of
this curve can be determined. In the present study, the relationship
between N�a*� and a* is determined by theoretical analyses. If the
size distribution parameter, n�a*�, of the asperities at each of the
elastic, elastoplastic, and fully plastic deformation regimes is
available, the real contact area of a surface in the dimensionless
form �Ar

*�Ar /�0
2� can be expressed as

Ar
* = Ae

* + Aep1
* + Aep2

* + Ap
* =�

ac
*

aL
*

ne�a*�ae
*da*

+�
� 1

6�1/�D−2�ac
*

ac
*

nep1�a*�aep1
* da* +�

� 1
100�1/�D−2�ac

*

� 1
6�1/�D−2�ac

*

nep2�a*�aep2
* da*

+�
0

� 1
110�1/�D−2�ac

*

np�a*�ap
*da* �25�

where aL
* represents the dimensionless largest contact area. The

size distribution functions in the three deformation regimes,
ne�a*�, nep1�a*�, nep2�a*�, and np�a*�, can thus be determined if
the real contact area Ar

* in Eq. �25� can be obtained by another
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way. If the probability density function of asperity heights, g�z*�,
is known, the real contact area, which was developed by Kogut
and Etsion �13�, can be modified by considering the area density
of surface asperities to be a variable here. Then, the asymptotic
expression of the real contact area is expressed as

Ar
* = Ae

* + Aep1
* + Aep2

* + Ap
* = An

*��
d*

d*+�c
*

�ae
*g�z*�dz*

+�
d*+�c

*

d*+6�c
*

�aep1
* g�z*�dz* +�

d*+6�c
*

d*+110�c
*

�aep2
* g�z*�dz*

+�
d*+110�c

*



�ap
*g�z*�dz* �26�

where �c
*=�c /�0 and z*=z /�0. The equality between Eqs. �25�

and �26� can be established first, then the substitution of the g�d*�
into the resulting equivalence allows us to obtain the largest con-
tact area �aL

*� of an asperity among all real contact spot areas. The
first right term of Eq. �26� is applied to determine the size distri-
bution function, ne�a*�, for the elastic deformation regime. Apply-
ing the theorem of calculus to Eqs. �25� and �26�, one can obtain
the size distribution function for the elastic, elastoplastic, and
fully plastic regimes, respectively. The detailed procedures of
derivations have been shown in the study of Chung and Lin �22�,
the expressions of ne�a*�, nep1�a*�, and nep2�a*�, np�a*� can thus
be given as follows:

ne�a*� = �An
*g�d*��3 − D

2
�24−DG*�D−2��ln ��1/2��D−3�/2a*�1−D�/2

�27�

nep1�a*� = �An
*g�d* + �c

*���1.1236 − 0.3386D�

��KH

E
�0.239

G*�0.76D−1.522�2�3.044−0.76D�

��ln ��0.38��0.38D−1.021�a*�0.261−0.38D� �28a�

nep2�a*� = �An
*g�d* + 6�c

*���1.1 − 0.33D�

��KH

E
�0.255

G*�0.746D−1.49�2�2.981−0.746D�

��ln ��0.373��0.373D−0.99�a*�0.245−0.373D� �28b�

np�a*� = �An
*g�d* + 110�c

*��3 − D

4
�G*�D−2�2�4−D�

��ln ��1/2��D−3�/2a*�1−D�/2 �29�

By applying Eq. �27� to Eq. �29�, the relationships of N�a*�
developed for the three deformation regimes can be found theo-
retically. Since the slope of an N�a*�−a* curve is equal to �1
−D� /2, the fractal dimension D at each deformation regime can
thus be determined.

2.7 Relationship Between Topothesy „G*
…, Fractal Dimen-

sion „D…, and Mean Separation „d*
…. According to the results

obtained above, the relationship between fractal dimension �D�
and mean separation �d*� has been established. The relationship
among topothesy �G*�, fractal dimension �D�, and mean separa-
tion �d*� can also be derived. According to Eq. �26�, the dimen-
sionless real contact areas, Ae

*, Aep1
* , Aep2

* , and Ap
* corresponding to

the contact behavior operating in the elastic, elastoplastic and
fully plastic deformation regimes, respectively. The normalization
of Eq. �2� gives ae

*=�Re
*�*=�Re

*�z*−d*�. Therefore, the dimen-
sionless contact area in the elastic deformation regime, Ae

*, can be
expressed as

Ae
* = �An

*�
d*

d*+�c
*

�Re
*�z* − d*�g�z*�dz* �30�

Substituting Re
* shown in Eq. �15� into Eq. �31� gives

Ae
* = �An

*�
d*

d*+�c
*

�	22�D−4�G*2�2−D�

ln �

1/�3−D�

�z* − d*�2/�3−D�g�z*�dz*

�31�
The equality of Eqs. �30� and �31� obtains

Ge
* = � �

d*

d*+�c
*

��Re
*�z* − d*�g�z*�dz*

�
d*

d*+�c
*

��22�D−4�/�3−D��ln ��1/�D−3��z* − d*�2/�3−D�g�z*�dz*�
�3−D�/2�2−D�

�32�

Following the method mentioned above, the dimensionless to-
pothesies for the first elastoplastic regime �Gep1

* ,1�� /�c�6�, the
second elastoplastic regime �Gep2

* ,6�� /�c�110� and the fully
plastic regime �Gp

* ,� /�c�110� are also can be found.
By incorporating Eqs. �27�, �24�, and �32�, variable G* and D in

the elastic regime as a function of d* can thus be found in the
following way. In Eq. �32�, the numerator value is determined first
by substituting �D0� and �G0

*� values in the flow chart of numerical
iterations �see Fig. 2�. However, the D value given in the denomi-
nator is now determined by using the D−d* relationship devel-
oped in Sec. 2.6. Then the D values corresponding to different d*

values can be substituted into Eq. �32� to obtain the G* values.

The values of these �D ,G*� sets corresponding to different d*

values are then substituted into Eq. �27� to calculate ne�a*�. The
N�a*� values can thus be obtained from the formula N�a*�

=�a*
aL

*

ne�a*�da*. These N�a*� values are then applied to determine

the new D values by Eq. �24�. These new D values and the pre-
viously obtained G* values are then replaced with the �D0� and
�G0

*� values, respectively, in order to start the next numerical it-
eration. This procedure is repeated in the successive iterations
until the D and G* are convergent. Then, these convergent values
of the �D ,G*� sets show the variations of these two roughness
parameters in the elastic regime with d*. The methods similar to
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the procedure mentioned above can be applied to determine the
�D ,G*� sets for the elastoplastic and fully plastic regimes. The
flow chart of finding the �D ,G*� values arising at different d*

values is shown in Fig. 2.

2.8 Dimensionless Topothesy „G0
*
…, Fractal Dimension „D0…

Corresponding to a Plasticity Index „„�…0… Before Asperity
Contact Deformations. In the present study, the fractal theory is
applied to modify the conventional GW model by incorporating
the fractal dimension �D� and topothesy �G� with the mean radius
of curvature �R� and the density of asperities ���. Thus, it is nec-
essary to find the relationship among the topothesy, the fractal
dimension and a given value of the plasticity index before contact
deformations occur. G0

*, D0, and ���0 represent the initial values
of the dimensionless topothesy, the fractal dimension and the plas-
ticity index before contact deformations, respectively. The plastic-
ity index introduced by Greenwood and Williamson �5� can be
expressed as

���0 = � �c

�s0
�−1/2

= � �c

�0
�−1/2� �0

�s0
�−1/2

�33�

where the �c expression is shown in Eq. �8�. The �c /�0 parameter
shown in Eq. �33� is thus expressed as

� �c

�0
�−1/2

=
2E

�KH
�R0

*�ac
*��−1/2 �34�

where R0
*�ac

*�=R0�ac� /�0, R0: the radius of curvature before con-
tact deformations� is obtained if the a* parameter shown in Eq.
�13b� is replaced by ac

*. Equation �34� can thus be rewritten as

� �c

�0
�−1/2

= 2�2D0−7�/2�D0−2��ln ��1/4�2−D0�� E

�KH
��D0−3�/2�D0−2�

G0
*−1/2

�35�

In the study of McCool �29�, the ratio of �s0 and �0 in Eq. �33�
can be expressed as ��s0 /�0�2=1–3.717�10−4 / ��0�0R0�2, where

Fig. 2 Flow chart for the numerical analyses of D„d*
… and G*

„d*
…
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the ��0�0R0� values corresponding to the plasticity indices of
���0=0.75 and 2 were obtained from the experimental study of
Bhushan and Dugger �30�. By Eq. �33�, the ��c /�0�−1/2 values
corresponding to ���0=0.75 and 2 are 0.7516 and 2.041,
respectively.

According to Eq. �35�, a given value of ��c /�0�−1/2 may not be
enough to determine the values of D0 and G0

* corresponding to a
���0 value. Therefore, it is necessary to find another relationship
which incorporates with Eq. �35� to determine the exact values of
D0 and G0

*. The scale dependence of the standard deviation of
surface heights, �0, which comes from the fractal power-law
analysis for the power spectrum, can be written as �27�

�0 =
G0

�D0−2�L�3−D0�

�2�sin ���2D0 − 5�/2�
�2D0 − 5��1/2
�36�

where L denotes the sample length. By Eq. �36� G0
* can thus be

written as

G0
* �

G0

�0
= �2G0

�3−D0�L�D0−3�	sin
��2D0 − 5�

2

�2D0 − 5�
1/2

�37�

the rearrangement of Eq. �37� gives G0 as

G0 = L� 1
�2

G0
*�1/�3−D0�	sin

��2D0 − 5�
2


�2D0 − 5�
1/2�D0−3�

�38�

Equations �35� and �38� are combined to solve the D0 and G0
*

values of a rough surface before asperity contacts and deforma-
tions occur. Because the fractal dimension of the surface is ranged
between 2 and 3 �2�D0�3�. Thus, numerous sets of D0 and G0

*

values can be obtained and satisfied by Eq. �35�. By Eq. �38�,
numerous G0 values can thus be obtained by substituting these
sets of D0 and G0

* values corresponding to this ���0 value. Thus,
numerous �0 values can be determined if the G0 and G0

* values are
available. The �0 value corresponding to a ���0 value can be
found in the experiments �30� and is now shown in Table 2. This
�0 value is then applied to determine the genuine D0 and G0

*

values.

3 Results and Discussion
In the present study, all the contact parameters related to the

topography including the fractal dimension �D�, the topothesy
�G�, the area density ���, and the probability density function �g�
of surface asperities are assumed to be variables as a function of
the mean separation distance of two contact surfaces. In order to
investigate the fractal dimensions varying with the dimensionless
separation, the N�a�-a curves should be obtained first by designat-
ing the material properties �E ,H� and the plasticity index before
contact deformations ���0. Figure 3�a� shows the N�a�-a curves
evaluated at different separations and a plasticity index of 0.75;
whereas Fig. 3�b� shows the curves evaluated at a plasticity index
of 2.0. In Fig. 3�a�, three of these five curves are marked in some-
where by �� /�c=1,a=ac�. This sign is given to indicate the bor-
der of the elastic and elastoplastic regimes. In the region that a
�ac, elastic deformation is shown; whereas in the region of a
�ac, elastoplastic deformation behavior is exhibited. No mark of
�� /�c=1,a=ac� is given in the curves with d*=3 and d*=4. This

implies that the N /An values corresponding to d*=3 and d*=4 are
obtained from the asperities operating in the elastic regime only.
The zigzag shown at the point marked by �� /�c=1,a=ac� is
caused due to the application of the power-form expressions de-
veloped in the study of Kogut and Etsion �13� for the contact
parameters including the size distribution functions. In the Kosut
and Etsion model, there exists a problem that discontinuities in the
asperity’s contact parameters are found to be present at the incep-
tion and the end of the elastoplastic deformation regime. These
N�a�-a curves show the behavior that the absolute values of these
negative slopes are increased by increasing the dimensionless
separation; i.e., the fractal dimension is increased by increasing
the separation between two contact surfaces.

Figure 3�b� shows the �N /An�-a curves evaluated by the eleva-
tion of ���0 to 2.0. All these five curves show the mark of �� /�c

=1,a=ac� to note the border of the elastic and elastoplastic re-
gimes. Four of these five curves show the mark of �� /�c=6� to
note the border beyond it, where the second elastoplastic regime
of an asperity is stretched. The results shown in Figs. 3�a� and
3�b� reveal that these contacts at different separations are mostly
operating in the elastic and elastoplastic regime, irrespective of
the ���0 value. The elastic regime is prevailing in a wide range of

Table 2 Contrasts for plasticity index, surface topography, topothesy, and fractal dimension

���0 �0�0R0 �0 /R0 �0 �m� D0 G0
*

0.75 5.292 6.586�10−3 2.94�10−6 2.19 1.86�10−6

2.0 46.898 4.834�10−2 21.58�10−6 2.3 1.15�10−4

Fig. 3 The theoretical results of N /An expressed as a function
of the contact spot area a: „a… „�…0=0.75 and „b… „�…0=2.0
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contact spot areas �a� if a small value of plasticity index is as-
sumed. This elastic regime is then narrowed significantly as the
plasticity index is elevated to 2.0.

The results of the fractal dimension corresponding to the
�N�a� /An�-a curves shown in Figs. 3�a� and 3�b� are shown in
Figs. 4�a� and 4�b�, respectively. The curve in either Fig. 4�a� or
Fig. 4�b� shows the fractal dimension to be increased by increas-
ing the dimensionless mean separation �d*�. The polynomials used
in fitting these results are shown in the respective figures. In the
same range of mean separations, the rate of increase in the fractal
dimension due to the rise in the mean separation is elevated by
reducing the plasticity index if the material properties are fixed.

The variations of the dimensionless topothesy with the dimen-
sionless mean separation, according to the G* expressions devel-
oped in Sec. 2.7, are obtained independently for these different
deformation regimes. They are shown in Fig. 5�a� for ���0=0.75
and in Fig. 5�b� for ���0=2.0. In both figures, the topothesies
evaluated at different deformation regimes are asymptotic to al-
most the same value as the mean separation is lowered to zero.
However, the differences between �or among� them are signifi-
cantly enlarged by increasing the mean separation. The magni-
tudes of G* shown in different deformation regimes always satisfy
the sequence that �G*�elastic� �G*� first

elastoplastic
� �G*� second

elastoplastic
.

The area density of asperities ���, which is widely regarded as

a constant value, is actually varied with the mean separation of
two contact surfaces. In Eq. �19�, the area density of asperities �
can be expressed as a function of the fractal dimension D. Accord-
ing to the results shown in Fig. 4, the fractal dimension is lowered

Fig. 4 The fractal dimensions varying with the dimensionless
mean separation. These data of D are obtained from the slope
values of those five curves shown in Fig. 3. „a… „�…0=0.75 and
„b… „�…0=2.0.

Fig. 5 The dimensionless topothesy varying with the dimen-
sionless mean separation. The values of G* are obtained for the
elastic, elastoplastic and fully plastic regimes. „a… „�…0=0.75
and „b… „�…0=2.0.

Fig. 6 Density of asperities varying with the dimensionless
mean separation
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by decreasing the mean separation of two contact surfaces. The
area density of asperities varying with the dimensionless mean
separation is shown in Fig. 6. This figure shows that the area
density of asperities is always decreased by lowering the mean
separation of two contact surfaces, regardless of the original plas-
ticity index ���0 before any surface contact. In general, the contact
spots cannot operate independent of each other because they are
connected by the solid bodies that can sustain some elastic or
plastic deformation. When the loads are low, only the small as-
perities are deformed. As the load is further increased, they can
merge to form a larger spot, thus resulting in the lowering of the
area density of asperities ���.

The distribution form of probability density function g�z*� is
also taken as a variable when evaluated at different mean separa-
tions �d*�. The variations of g�z*� for ���0=0.75 are shown in Fig.
7�a�; whereas the variations of g�z*� for ���0=2.0 are shown in
Fig. 7�b�. According to the study of Nayak �26�, the probability
density function was developed for the asperity heights as a func-
tion of the bandwidth parameter ��. Since this bandwidth param-
eter is considered to be a variable as a function of the mean
separation �d*�, the value of �� corresponding to a mean separa-
tion is also marked behind the mean separation. As the two sur-
faces are separated by a large distance, ��→ and the Gaussian
distribution is assumed for the asperity heights. If the separation is

reduced, the �� value is quickly lowered too. Then, the probability
density function becomes non-Gaussian and the profile is no
longer symmetric with respect to the axis of z*=0. The peak value
is shifted rightwards �z*�0� and is elevated by reducing the sepa-
ration between the two contact surfaces. Detailed investigation of
these two figures finds the characteristic that the shift distance
between z*=0 and the z* value corresponding to the peak value of
a profile is related to the bandwidth parameter ��.

According to the definition of the plasticity index from Eq.
�34�, it is expressed as a function of the critical interference ��c�
and the standard deviation of asperity height ��s0�. According to
Eq. �36�, the critical interference can be expressed as a function of
the following parameters: fractal dimension D, dimensionless to-
pothesy, G*, and the material properties �hardness H, Young’s
modulus E�. In the present study, the fractal dimension and dimen-
sionless topothesy, is varied with the different mean separation.
Therefore, the plasticity index is expected to vary with the mean
separation, rather than remain a constant value. Figure 8 shows
the variations of � with d* for the cases of ���0=0.75 and ���0
=2.0. These two curves are shown for d* in the range of 0 to 4.0
only. As the d* value is further increased to be sufficiently large,
these two curves will be asymptotic to ���0=0.75 and ���0=2.0,
respectively.

The results of dimensionless contact load Ft
* obtained by the

assumptions of constant D, G*, and Gaussian g�z*� are compared
with variable D, G*, and non-Gaussian g�z*�, and this is shown in
Fig. 9. These results are evaluated at a value of ���0=2.0. The
contact load results for ���0=0.75 show behavior similar to that
exhibited for ���0=2.0, but they are not presented here. The con-
tact load results predicted by the condition of variable D and G*

and non-Gaussian g are always higher than those evaluated by the
assumption of constant D and G* and Gaussian g if they are
obtained at the same value of d*. The difference between these
two kinds of contact loads is significantly enlarged by decreasing
the mean separation between the two contact surfaces. Under the
same conditions given in Fig. 9, the contact area predicted by the
condition of variable D and G* and non-Gaussian is also always
higher than that predicted by the assumption of constant D and G*

and Gaussian g�z*� �see Fig. 10�. Similarly, the difference between
these two kinds of contact areas is enlarged by reducing the mean
separation �d*�.

Figure 10 shows the variations of the dimensionless real contact
area with the dimensionless total load applied to the contact sur-
faces for ���0=0.75 and ���0=2.0. In the log-log plot, the real
contact area and the total contact load are presented as having a

Fig. 7 Probability density functions of asperity heights vary-
ing with the dimensionless asperity height: „a… „�…0=0.75 and
„b… „�…0=2.0

Fig. 8 Plasticity index of rough surfaces varying with the di-
mensionless mean separation
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linear relationship. The slope of a straight line is dependent upon
the value of ���0 and the conditions set for D, G*, �, and g�z*�. In
each of these two figures, the slope of the straight line obtained by
the assumption of constant D, G*, and � as well as Gaussian g�z*�
is larger than that exhibited in the line obtained by variable D, G*,
and � as well as non-Gaussian g�z*�, regardless of the ���0 value.

4 Conclusions
�1� Instead of a general consideration of the microcontacts

based on the GW model, the mean radius of curvature and the
density of asperities are varied with the mean separation between
two contact surfaces �thus the interference�, these two parameters
can be expressed as a function of variable fractal dimension and
topothesy. The probability density function of asperity heights is
also found to be a function of variable fractal dimension. More-

over, the fractal dimension and the topothesy are related to the
mean separation. Thus, these parameters are found to vary with
the interference.

�2� The fractal dimension is always reduced by decreasing the
mean separation of the two contact surfaces, regardless of the
initial plasticity index before surface contacts. The topothesies
arising at different deformation regimes also show different be-
havior in the variations. Nevertheless, the topothesy is also re-
duced by decreasing the mean separation, regardless of the oper-
ating deformation regime of an asperity and the initial plasticity
index.

�3� The density of surface asperities is lowered by reducing the
mean separation between the two contact surfaces, regardless of
the initial plasticity index before contact deformations. As two
rough surfaces experience contact deformations, the topographies
of each surface will be changed. The plasticity index is no longer
a constant value, but varies with the mean separation.

�4� The contact load and the total contact area predicted by the
assumption of constant D, G*, and � as well as Gaussian g is
lower than the load predicted by variable D, G*, and � as well as
non-Gaussian g.

Nomenclature
a � area of a contact spot

Ar � real contact area
An � apparent area
d � separation based on asperity heights
D � 3D fractal dimension �2�D�3�

Ds � 2D fractal dimension �1�Ds�2�
E � effective Young’s modulus
F � contact load

g�z*� � probability density function of summit heights
G � topothesy
h � separation based on surface heights
H � hardness of the softer material in contact
K � maximum contact pressure factor
N � total number of contact spots
P � mean contact pressure
R � the equivalent radius
Y � yield stress of the material in simple tension or

compression
ys � separation between the mean of asperity

heights and that of surface heights
z � height of asperity measured from the mean of

asperity heights
� � 1.5, a parameter that determined the density of

frequencies in the surface
�� � the bandwidth parameter
� � interference of asperity
� � standard deviation of surface heights

�s � standard deviation of asperity heights
� � the area density of asperities
� � Poisson’s ratio
� � plasticity index

Subscripts or Superscripts
0 � initial value of the surface before contact
c � critical value
e � elastic deformation

ep � elastoplastic deformation
p � plastic deformation
t � total summation
* � dimensionless
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The Mixed Mode I and II
Interface Crack in
Piezoelectromagneto–Elastic
Anisotropic Bimaterials
Taking the electric–magnetic field inside the interface crack into account, the interface
crack problem of dissimilar piezoelectromagneto (PEMO)–elastic anisotropic bimaterials
under in-plane deformation is investigated. The conditions to decouple the in-plane and
anti-plane deformation is presented for PEMO–elastic biaterials with a symmetry plane.
Using the extended Stroh’s dislocation theory of two-dimensional space and the analytic
continuition principle of complex analysis, the interface crack problem is turned into a
nonhomogeneous Hilbert equation in matrix notation. Four possible eigenvalues as well
as four eigenvectors for the fundamental solution to the corresponding homogeneous
Hilbert equation are found, so are four modes of singularities for the fields around the
interface crack tip. These singularities are shown to have forms of r−�1/2�±i�1 and
r−�1/2�±i�2, in which the bimaterial constants �1 and �2 are proven to be real numbers for
practical dissimilar PEMO–elastic bimaterials. Compared with the solution for the in-
terface crack of dissimilar elastic bimaterials without electro–magnetic properties, two
new additional singularities are discovered for the interface crack in the PEMO–elastic
bimaterial media. The electric–magnetic field inside the crack is solved by employing the
“energy method,” which is based on finding the stationary point of the saddle surface of
the energy release rate with respect to the electro–magnetic field inside the crack. Closed
form expressions for the extended crack tip stress fields and crack open displacements are
formulated, so are some other fracture characteristic parameters, such as the extended
stress intensity factors and energy release rate �G� for dissimilar PEMO–elastic bimate-
rial solids. Finally, fundamental results and some conclusions are presented, which could
have applications in the failure of piezoelectro/magneto–elastic devices.
�DOI: 10.1115/1.2424468�

Keywords: piezoelectromagneto-elastic solids, dissimilar, anisotropic, interface crack,
bimaterials

1 Introduction
The simultaneous presence of piezo-electric and piezo-

magnetic material properties �1,2� usually lends a device some
exceptional features such as converting energy from one form to
the other form �3,4� and flat frequency responses �5�. These types
of media find such applications in smart structure sensors, actua-
tors, magnetoelectric memory apparatus, and broadband magnetic
probes. In these applications, dissimilar bimaterials or layered
composites are often incorporated. Having been considered as one
of the common failure modes, an interface crack/delamination
could be developed in structures made of piezoelectro magneto
�PEMO�–elastic bimaterials, and then deteriorate the performance
of the devices.

The interface crack phenomenon has been investigated for de-
cades by many authors �6–13�. Morevover, although the piezo-
magnetic material properties were not included, there are many
studies on piezoelectric media or smart materials such as those by
McMeeking �14�, Kuo and Barnett �15� and Suo et al. �16�. In
their studies, the singularities around the interface crack tip were
found to be of the form r−�1/2�±i� and r−�1/2�±�, where � and � are
real numbers. In particular, the paper by Suo et al. �16� has inves-
tigated this type of interface crack in detail.

As addressed in the literature �e.g., Refs. �2,4,5��, the simulta-
neous presence of the piezoelectric and piezomagnetic material
properties usually have a big influence on the behavior of PEMO–
elastic solids or layered structures. Thus, these piezoelectromag-
netic material properties would also affect the interface fracture
behavior of PEMO–elastic bimedia. Several papers on the study
of cracks in monolithic PEMO–elastic solids are available such as
Sih and Song �17�, Song and Sih �18�, and Gao et al. �19� etc. But
few papers can be found for the problem of the interface crack in
PEMO bimaterial solids. Gao et al. �20� presented a solution for a
permeable interface crack and presented the singularities of the
interface crack of the form as r−�1/2�±i��, but did not show whether
�� are real or complex numbers. Furthermore, another important
fracture parameter, the energy release rate G, has not been ad-
dressed in the literature for the in-plane interface crack of dissimi-
lar anisotropic PEMO-elastic bimaterial solids.

In this research, the impermeable and permeable interface
cracks in dissimilar PEMO bimaterial solids are investigated by
employing the Stroh’s dislocation theory �21�, extended to
PEMO–elastic media �e.g., Refs. �1,22��. The electric–magnetic
field inside the crack is also considered. The Mode III interface
crack solution has been analyzed in the authors’ earlier work �Ref.
�23��, and the current paper deals with the mixed mode I and II
in-plane problems.

The paper is organized as follows: In Sec. 2, the conditions to
decouple the in-plane and anti-plane deformations are derived and
basic equations for the in-plane deformation are presented in the
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form of the extended Stroh’s dislocation theory. In Sec. 3, a non-
homogenous Hilbert equation is obtained in matrix notation by
using the analytic continuation principle of complex analysis.
Four roots �i.e., four eigenvalues� to the corresponding homog-
enous Hilbert equation are found and so are four eigenvectors.
Four possible singularities are then found in the form of r−�1/2�±i�1

and r−�1/2�±i�2. The bimaterial property constants �1 and �2 are
proved to be real numbers for practical dissimilar bimaterial me-
dia. Compared with the solutions for conventional dissimilar bi-
materials and piezoelectric bimaterials, two new types of singu-
larities can be observed in this solution due to the simultaneous
presence of piezoelectric and piezomagnetic material properties.
Fracture parameters such as the extended stress intensity factor
and the extended crack open displacement are presented in closed
form for uniform applied remote loading.

The “energy method,” which is based on finding the stationary
point of the saddle surface of the energy release rate with respect
to the electromagnetic field inside the crack �23� is employed to
find the solution for the electric–magnetic fields inside the inter-
face crack. Compact formulas for the energy release rate are de-
rived for impermeable and permeable interface cracks. As a spe-
cial solution, a crack in a monolithic anisotropic PEMO–elastic
medium is also discussed by setting the upper and lower media
identical. The conventional singularity of r−�1/2� is found for the
crack tip fields in monolithic materials. This result is in good
agreement with the results in the literature �18�. In Sec. 4, numeri-
cal results are presented to verify the characteristics of some bi-
material parameters and demonstrate the influence of the piezo-
electromagnetic material properties on the energy release rate. The
behavior of the energy release rate, G, is also studied under vari-
ous loading conditions. In Sec. 5 we provide some useful conclu-
sions.

2 Basic Equations
The basic equations, in extended Stroh’s formalism, for

PEMO–elastic material under generalized deformation are sum-
marized in this section. The conditions to decouple the in-plane
and anti-plane deformation are also discussed and some formulas
are developed for the in-plane deformation.

In a fixed Cartesian coordinate system �x1 ,x2 ,x3�, the general-
ized Hooke’s law for an elastic material considering both piezo-
electric and piezomagnetic material properties may be written in
the following form

�ij = cijkluk,l + elij�,l
E + �lij�,l

H

Di = eikluk,l − �il�,l
E − �il�,l

H

Bi = �ikluk,l − �li�,l
E − �il�,l

H �1�

where i , j ,k , l range in �1,2,3� and the repeated indices imply sum-
mation; the comma stands for differentiation with respect to cor-
responding coordinate variables; �ij is the elastic stress, uk the
elastic displacement; cijkl the elastic moduli tensor; Di the electric
displacements; �E the electrostatic potential; �il the electric per-
mittivity; Bi the magnetic induction �magnetic fluxes�; �H the
magnetic scalar potential; �il the magnetic permeability; and eikl,
�ikl, and �li the piezoelectric, piezomagnetic, and magnetoelectric
coefficients, respectively. For the material constants, the following
relationships hold

cijkl = cjikl = cijlk = cklij; eikl = eilk; �ikl = �ilk

�il = �li; �il = �li; �il = �li �2�

The equilibrium equations read

�ij,i + f j = 0, Di,i − fe = 0, Bi,i − fm = 0 �3�

If one defines the extended displacements as

U = �u1,u2,u3,�E,�H�T

or

UK = uk, for K = 1,2,3; U4 = �E; U5 = �H �4�

and, correspondingly, extends the conventional 3�3 stress tensor
to a 3�5 stress tensor

�iJ
= �ij, for J = 1,2,3; �i4 = Di; �i5 = Bi �5�

then the equilibrium equations could be rewritten as

CiJKlUK,li + fJ = 0 �6�

where CiJKl are the extended material constants

CiJKl =�
Cijkl J, K = 1,2,3

elJi J = 1,2,3; K = 4

eiKl J = 4; K = 1,2,3

�lJi J = 1,2,3; K = 5

�iKl J = 5; K = 1,2,3

− �il J = 4, K = 5

− �li J = 5, K = 4

− �il J = K = 4

− �il J = K = 5

� �7�

and fJ is the extended body force

fJ = f j, for J = 1,2,3; f4 = − fe; f5 = − fm �8�

in which, f i, fe, fm are the body force, electric charge, and mag-
netic charge, respectively.

2.1 Decoupling the In-Plane and Anti-Plane Deformation.
For a plane system, the extended displacement field depends on
two variables, namely x1 and x3 �Fig. 1�. Then, expanding the
equilibrium Eq. �3� leads to the expressions

C1JK1UK,11 + �C1JK3 + C3JK1�UK,13 + C3JK3UK,33 = fJ,

J,K = 1, . . . ,5 �9�
Rewriting Eq. �9� gives

C1JK1UK,11 + �C1JK3 + C3JK1�UK,13 + C3JK3UK,33 + C1J21U2,11

+ �C1J23 + C3J21�U2,13 + C3J23U2,33 = fJ, J,K = 1,3,4,5

C12K1UK,11 + �C12K3 + C32K1�UK,13 + C32K3UK,33 + C1221U2,11

+ �C1223 + C3221�U2,13 + C3223U2,33 = f2, K = 1,3,4,5

�10�
To decouple the anti-plane and in-plane deformation, the coef-

Fig. 1 An interface delamination between dissimilar
piezoelectromagneto–elastic anisotropic bimedia and the asso-
ciated contour integral path
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ficients for the terms involving U2 in Eq. �10�1 and not involving
U2 in Eq. �10�2 should vanish, leading to the following conditions

C1J21 = C1J23 = C3J21 = C3J23 = 0, J = 1,3,4,5

C12K1 = C12K3 = C32K1 = C32K3 = 0, K = 1,3,4,5 �11�

or, in contracted form

C14 = C16 = C34 = C36 = C54 = C56 = 0

e16 = e14 = e36 = e34 = 0, �16 = �14 = �36 = �34 = 0 �12�
Equation �12�1 is the condition which decouples the anti-plane and
in-plane deformation for an anisotropic material with no piezo-
electromagnetic properties. One may call it the mechanical decou-
pling condition. Unlike the conventional anisotropic media, one
may see that if a PEMO–elastic material only satisfies this me-
chanical decoupling condition, the in-plane loading may still pro-
duce an anti-plane deformation, or vice versa.

2.2 Basic Equations for In-Plane Deformation. Since the
anti-plane interface crack problem was studied by Li and Kardo-
mateas �23�, the current work focuses on the interface crack prob-
lem under in-plane deformation. The extended displacements Eq.
�4� may be redefined as

U = �u1,u3,�E,�H�T

or

U1 = u1, U2 = u3, U3 = �E; U4 = �H �13�

A nontrivial displacement solution to Eq. �6� with the correspond-
ing stress function 	k�k=1,2 ,3 ,4�, in the absence of the extended
body force, takes the form

U = 	
J=1

4

�aJgJ�zJ� + āJḡJ�z̄J��, 	 = 	
J=1

4

�bJgJ�zJ� + b̄JḡJ�z̄J��,

zJ = x1 + pJx3 �14�

where z̄ denotes the conjugate of a complex z; pJ is a complex
number; a j is a column vector; and g�zJ� is a function vector to be
determined from the boundary conditions.

The stresses can be written in term of a stress function, 	, as

�i1 = −
�	i

�x3
, �i3 =

�	i

�x1
�15�

Substitution of Eq. �14� into Eq. �3� leads to the following
eigenequation

�Q + pJ�R + RT� + pJ
2T�aJ = 0 �16�

where

QJK = C1JK1, RJK = C1JK3, TJK = C3JK3, J,K = 1,3,4,5

�17�
Specifically, when contracted notation is employed, one has

�QJK� = 

c11 c15 e11 �11

c15 c55 e15 �15

e11 e15 − �11 − �11

�11 �15 − �11 − �11

�
�18�

�RJK� = 

c15 c13 e31 �31

c55 c53 e35 �35

e15 e13 − �13 − �13

�15 �13 − �31 − �13

�

�TJK� = 

c55 c35 e35 �35

c35 c33 e33 �33

e35 e33 − �33 − �33

�35 �33 − �33 − �33

� �19�

As for the elastic and the piezoelectric cases �Suo et al. �16� and
Lothe and Barnett �24��, it can be shown that the pJ are complex,
and that if pJ is an eigenvalue of Eq. �16�, then p̄J is also an
eigenvalue of Eq. �16� �1�. The roots pJ will be assumed to be all
distinct, and in this paper equal roots are viewed as the limiting
case of the distinct roots. From the relationship �13=�31, one may
obtain

bJ = �RT + pJT�aJ = −
1

pJ
�Q + pJR�aJ �20�

The combination of Eqs. �16� and �20� readily leads to

N�a

b
 = �N1 N2

N3 N1
T �a

b
 = p�a

b
 �21�

where N is an 8�8 matrix with N1=−T−1RT, N2=T−1, N3
=RT−1RT−Q; and the superscript T stands for the transpose of a
matrix.

For the convenience of writing, we denote the extended traction
vector on a surface x3=constant, as

t = ��31,�33,D3,B3�T �22�

Expression �14� may also be rewritten in vector form

u = Ag�zJ� + Āḡ�z̄J�, 	 = Bg�zJ� + B̄ḡ�z̄J�; zJ = x1 + pJx3

�23�

where A= �a1 ,a2 ,a3 ,a4�, B= �b1 ,b2 ,b3 ,b4�, and pJ�J=1,2 ,3 ,4�;
these satisfy the orthogonality relations �25� after being properly
normalized

�BT AT

B̄T ĀT � �A Ā

B B̄
 = � I 0

0 I
 �24�

Here, three useful matrices may be defined as

M = iAB−1, L = − 2iBBT, S = i�2ABT − I� �25�

where I=diag�1,1 ,1 ,1� is the unit matrix. One can see from Eq.
�24� that H and L are real and symmetric, whereas S and SL−1 are
real and anti-symmetric. Moreover, the following relations can be
verified.

M = L−1 + iL−1ST = L−1 − iSL−1 �26�

which tells that M is Hermitian. The M matrix may be partitioned
as

M = �M11 M13 M14

M31 M33 M34

M41 M43 M44
� �27�

where

M11 � �elasticity�−1, M33 � − �permittivity�−1

M44 � − �permeability�−1

M13 = M̄31
T � �piezoelectricity�−1 �28�

M14 = M̄41
T � �piezomagneticity�−1

M34 = M̄43
T � �magnetoelectricity�−1

and M11 is positive definite �24�, but M33
0 and M44
0.
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If the coordinate system �x1 ,x2 ,x3� transfers to a new coordi-
nate system �x1

* ,x2
* ,x3

*� by the in-plane rotation

� �xi
*

�xj
 = 
 cos��� sin��� 0

− sin��� cos��� 0

0 0 1
� �29�

then one can easily show that

S��� = �T���S����, L��� = �T���L���� �30�
where

���� = 

cos��� sin��� 0 0

− sin��� cos��� 0 0

0 0 1 0

0 0 0 1
� �31�

A transformation similar to Eq. �30� was also addressed in Suo et
al. �16� in their fracture mechanics study of piezoelectric material.

3 Interface Cracks in PEMO-Elastic Bimaterial
Media

3.1 Statement of the Problem. Let the medium I occupy the
upper half space �denoted by L� and medium II be in the lower-
half space �denoted by R�; the interface crack is assumed to be
located in the region a
x1
b, −
x2
 of the plane x3=0
�Fig. 1�. The �i3

 = p= ��13
 ,�33

 ,D3
 ,B3

�T is applied at infinity.
Under applied external loading, the crack may open and be filled
with vacuum or air, in which an electric–magnetic field, denoted
by D3

0 and B3
0, would be built up. This field is uniform if the

applied loading �i3
 is uniform �23�. By the superposition prin-

ciple, this interface crack problem is equivalent to the one under
the applied loading

p = ��13
 , �33

 , �D3
0, �B3

0�T; �D3
0 = D3

 − D3
0, �B3

0 = B3
 − B3

0

�32�
acting on the interface crack surfaces while the loading vanishes
at infinity.

3.2 Formulation of the Solution to the Interface Crack.
The procedure to derive the solution is similar to the one em-
ployed in Li and Kardomateas �26�. From Eq. �23�, one can have
the following expressions for this bimedia

UI = AI�I�zJ� + ĀI�̄I�z̄J�

	I = BI�I�zJ� + B̄I�̄I�z̄J� �33�

where UI ,	I are displacement and stress functions for zJ�L; and
for medium II

UII = AII�II�zJ� + ĀII�̄II�z̄J�

	II = BII�II�zJ� + B̄II�̄II�z̄J� �34�

where UII ,	II are displacement and stress functions for zJ�R. For
the convenience of writing, the symbols I and II, denoting the
quantities in medium L and R, respectively, may be put as super-
scripts or subscripts.

Making use of Eq. �15�2, the boundary condition for this prob-
lem can be written for the interface rack region �a
x1
b ,x3
=0� as

	+�
I�x1� = 	−�

II�x1� = − p�x1� �35�

and along the interface outside the crack �x1
a and b
x1, x3
=0�

U+
I �x1� = U−

II�x1�, 	+�
I�x1� = 	−�

II�x1� �36�
and at infinity

�ij
I = �ij

II = 0, at infinity �37�

where the convention 	�x1 ,x3�=	±�x1� as x3→0± for any func-
tion 	�x1 ,x3� was used and will be employed in the following
sections.

The displacement continuity along the bonded interface gives

AI�I+�x1� − ĀII�̄II+�x1� = AII�II−�x1� − ĀI�̄I−�x1� �38�

One may define a function

��z� =�AI�I�z� − ĀII�̄II�z� , z � L

AII�II�z� − ĀI�̄I�z� , z � R
� �39�

which automatically satisfies the condition �38� and is analytic on
the whole plane except the cut along the interface crack.

Differentiation of Eq. �39� yields

� � �z� =�AI�I��z� − ĀII�̄II� �z� , z � L

AII�II� �z� − ĀI�̄I��z� , z � R
� �40�

The traction continuity on the bonded interface leads to

BI�I+� �x1� − B̄II�̄II+� �x1� = BII�II−� �x1� − B̄I�̄I−� �x1� �41�

Similarly to the displacement continuity, a function which auto-
matically satisfies the condition Eq. �41� may be defined as

��z� =� BI�I��z� − B̄II�̄II� �z� z � L

BII�II� �z� − B̄I�̄I��z� , z � R
� �42�

which is analytical on the whole plane except the cut along the
interface crack.

Solving Eqs. �40� and �42� gives for z�L

BI�I��z� = N�i���z� + M̄II��z��

B̄II�̄II� �z� = BI�I��z� − ��z� �43�

and for z�R

BII�II� �z� = N̄�i���z� + M̄I��z��

B̄I�̄I��z� = BII�II� �z� − ��z� �44�

In the above equations, the following matrix was used

N−1 = MI + M̄II = D + iW, D = L1
−1 + L2

−1, W = S2L2
−1 − S1L1

−1

�45�

The matrix N is Hermitian since MI and MII are Hermitian; matrix
D can be easily shown to be real symmetric and W to be real
anti-symmetric.

Substituting Eqs. �43� and �44� into the boundary conditions
Eqs. �35�1,2, respectively, gives

BI�I+� �x1� + BII�II−� �x1� − �−�x1� = − p�x1�

BII�II−� �x1� + BI�I+� �x1� − �+�x1� = − p�x1� �46�
Subtraction of Eq. �46�2 from Eq. �46�1 yields.

�+�x1� − �−�x1� = 0 �47�

which implies that ��z� is continuous on the whole interface.
By the analytic continuation principle �27�, the function ��z� is

analytical on the whole plane. But according to Liouville’s theo-
rem �27�, this ��z� must be a constant function in the whole do-
main. However, the condition in Eq. �37� imposes that this func-
tion vanish at infinity. Therefore, this constant function must be
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identically zero in the whole plane, i.e.

��z� = 0, for all z �48�
Then, either Eq. �46�1 or Eq. �46�2 leads to a general Hilbert
equation in matrix notation

N�+��x1� + N̄�−��x1� = ip�x1�, a 
 x1 
 b �49�

The homogenous equation corresponding to the above general
Hilbert Eq. �49� can be written as

NX+�x1� + N̄X−�x1� = 0, a 
 x1 
 b �50�

The following function vector may be considered as possible so-
lution to Eq. �50�

��z� = v�z − a�−��z − b��−1 �51�

which is analytic in the whole plane except the cut along �a ,b�
and has the property

z��z� → 1, as �z� →  �52�

Substitution of Eq. �51� into Eq. �50� leads to a 4�4 eigenvalue
system

�N + e2�i�N̄�v = 0, � = 1/2 + i� �53�
Since the procedure to obtain the solution to this eigenvalue

problem �53� is significant for one to understand the singularities
of the fields at the interface crack tip, a detailed study of Eq. �53�
is presented in Appendix A, in which four possible eigenvalues of
� are found as

�1,2 = 1/2 ± i�1, �3,4 = 1/2 ± i�2 �54�

It is also shown in Appendix B that the bimaterial parameters �1
and �2 are real numbers and the corresponding four eigenvectors,
vi�i=1. . .4�, are complex and satisfy the following conditions

v2 = v̄1, v3 = v̄4 �55�

The matrix defined as v= �v1 ,v2 ,v3 ,v4� can also be written as v
= �v1 , v̄1 ,v3v̄3�.

Since N is a Hermitian matrix, the following identity can be
readily verified

v̄TNv = 

v̄1

TNv1 0 0 0

0 v1
TNv̄1 0 0

0 0 v̄3
TNv3 0

0 0 0 v3
TNv̄3

� �56�

Denoting

�1 = v̄1
TNv1, �2 = v1

TNv̄1, �3 = v̄3
TNv3, �4 = v3

TNv̄3 �57�

then all the �s are real numbers, and �1��2, �3��4, unless N is
real symmetric. One can further show

�1 = e2��1�2 �3 = e2��2�4 �58�

and normalize v as

v̄TNv = diag��1̃e��1,�1̃e−��1,�2̃e��2,�2̃e−��2� �59�

where �̃1=�1e−��1 and �̃2=�3e−��2 are real numbers.
Therefore, the fundamental solution to the homogeneous Hil-

bert Eq. �50� would take the form

X�z� =
1

��z − a��z − b�
v��z;�1,�2�

�60�
��z;�1,�2�

= diag�� z − b

z − a
�i�1

, � z − b

z − a
�−i�1

, � z − b

z − a
�i�2

, � z − b

z − a
�−i�2

One may see that there are four modes of singularities for the

crack tip fields and these singularities have the following form

�x1 − a�−�1/2��i�1�x1 − b�−�1/2�±i�1, �x1 − a�−�1/2��i�2�x1 − b�−�1/2�±i�2

�61�
Hence, a solution to the nonhomogeneous Hilbert Eq. �49�,

which vanishes at infinity, can be formulated as

���z� =
X�z�
2�i�

ab

�X+�x1��−1N−1�ip�x1��dx1

x1 − z
�62�

It can be seen that once the applied loading is given, a specific
expression to Eq. �62� would be obtained, as would the displace-
ment and stress functions.

For the applied constant loading p�x1�= p, a closed form solu-
tion can be found by the contour integral method �Appendix B� as

�p��z� = v�I −
��z;�1,�2�

��z − a��z − b�
��z;�1,�2�v−1�N + N̄�−1�ip�

�63�

where � is defined as

��z;�1,�2� = diag�z1 −
�b + a�

2
+ �b − a�i�1,z2 −

�b + a�
2

− �b − a�i�1,z3 −
�b + a�

2
+ �b − a�i�2,z4 −

�b + a�
2

− �b − a�i�2 �64�

Further integration of Eq. �63� leads to

�p�z� = v���z� − ��z − a��z − b���z;�1,�2��v−1�N + N̄�−1�ip�
�65�

where

��z� = diag�z1,z2,z3,z4� �66�

and the terms contributing to rigid body motion have been
omitted.

If we let r be the distance ahead of the crack tip, then, from
expressions �63� and �33�2 �or �34�2�, one can find that the crack
tip fields, such as the extended stress field, can be expressed as the
combination of

�iJ
� r−�1/2�±i�1, r−�1/2�±i�2 �67�

i.e., a combination of four different singularities in
piezomagnetoelectro–elastic dissimilar bimaterials. It should be
mentioned that for conventional dissimilar bimedia, only two sin-
gularities of the form r−�1/2�±i� exist �� is real �6�� and for the
piezoelectric dissimilar bimaterials, four possible singularities of
the form r−�1/2�±i� and r−�1/2�±� were found �� and � are real
�15,16��. In Eq. �67�, two new singularities of the form r−�1/2�±i�2

��2 is real� can be observed. These new types of singularities
reflect the effects from the simultaneous presence of the piezo-
electric and the piezomagnetic material properties.

3.3 Interface Crack Characteristic Parameters. With the
solution to the stress functions in the foregoing section, some
interesting fracture characteristic parameters such as the crack tip
stress intensity factors and the extended displacements jump near
the crack tip; furthermore, the energy release rate can be readily
derived.

From Eqs. �43�1 and �43�2, the extended traction along the in-
terface can be expressed as
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t�x1� = Ni�+��x1� + N̄i�−��x1� �68�
We will show that the right hand side of Eq. �68� is real as

required.
Substituting the stress function Eq. �63� into Eq. �68� leads to

t�x1� = − p + �NX+�x1� + N̄X−�x1����x1,�1,�2��Nv + N̄v�−1p

�69�

or, when Eqs. �50� and �53� are employed, it reads

t�x1� = �− p + �N + N̄�v
��x1;�1,�2���x1;�1,�2�

��x1 − a��x1 − b�
v−1�N + N̄�−1p x1 
 a and b 
 x1

− p a 
 x1 
 b
� �70�

Making use of Eqs. �56� and �59�, the extended traction at a dis-
tance r ahead of the crack tip such as b �Fig. 1� can be expressed
in the form

t�r� =
1

�2�r
���b − a�/2�N + N̄�� �1/2 + i�1�ri�1

�b − a�i�1�1̃ cosh���1�
v1v̄

T
1p

+
�1/2 − i�1�r−i�1

�b − a�−i�1�1̃ cosh���1�
v̄1v1

Tp

+
�1/2 + i�2�ri�2

�b − a�i�2�2̃ cosh���2�
v3v̄3

Tp

+
�1/2 − i�2�r−i�2

�b − a�−i�2�2̃ cosh���2�
v̄3v3

Tp �71�

where

p = ��31
 ,�33

 ,�D3
0,�B3

0�T �72�
One can easily see that the right side of Eq. �71� is a real vector,

an expected result. The vi
Tp�i=1,3� are scalar �complex or real�.

Therefore, the interface traction ahead of the crack tip may be
expressed in the space spanned by two eigenvectors �v1 ,v3� as

t�r� = �N + N̄�� ri�1K�v1

�2�r�1̃ cosh2��1��
+

r−i�1K̄�v̄1

�2�r�1̃ cosh2��1��

+
ri�2KDBv3

�2�r�2̃ cosh2��2��
+

r−i�2K̄DBv̄3

�2�r�2̃ cosh2��2��
 �73�

where K� and KDB are complex numbers, defined as

K� = KI + iKII = ���b − a�/2�1/2 + i�1��b − a�−i�1 cosh��1��v̄1
Tp

KDB = KD + iKB = ���b − a�/2�1/2 + i�2��b − a�−i�2 cosh��2��v̄3
Tp

�74�

These Ks can be called the extended stress intensity factors
�ESIFs�; similar notations have also been defined in the literature.

One can also extend the conventional crack open displacement
�COD� to PEMO–electric materials. From Eqs. �33�, �34�, and
�39�, this extended crack open displacements �ECOD� can readily
be evaluated by

�u�x1� = u+
I �x1� − u−

II�x1� = �+�x1� − �−�x1� = ���x1 − a��b − x1��1/2v��+�x1;�1,�2� + �−�x1;�1,�2��v−1�N + N̄�−1p , a 
 x1 
 b

0, x1 
 a or b 
 x1
�

�75�

Then the ECOD at a small distance r behind the tip of the
interface crack reads

�u�r� = 2� r

2�
���b − a�/2v diag� ri�1

�b − a�i�1�1̃

,

r−i�1

�b − a�−i�1�1̃

,
ri�2

�b − a�i�2�2̃

,
r−i�2

�b − a�−i�2�2̃
v̄Tp �76�

The ECOD can be further expressed in terms of the ESIF

�u�r� = 2� r

2�� ri�1K�v1

�1/2 + i�1��1̃ cosh���1�

+
r−i�1K̄�v̄1

�1/2 − i�1��1̃ cosh���1�
+

ri�2KDBv3

�1/2 + i�2��2̃ cosh���2�

+
r−i�2K̄DBv̄3

�1/2 − i�2��2̃ cosh���2�
 �77�

a real vector, as expected.
Next, the energy release rate G can be computed and it reads

G =
1

2
lim

�→0+

1

�
�

0

�

t�r�T�u�� − r�dr =
v̄1

T�N + N̄�v1

2�1̃ cosh4��1��
�K��2

+
v1

T�N + N̄�v̄1

2�1̃ cosh4��1��
�K��2 +

v3
T�N + N̄�v̄3

2�2̃ cosh4��2��
�KDB�2

+
v̄3

T�N + N̄�v3

2�2̃ cosh4��2��
�KDB�2 �78�

In deriving Eq. �78�, the following identity was employed

lim
�→0+

1

�
�

0

�

r−�1/2�±i��� − r��1/2��i�dr =�
0

1

s−�1/2�±i��1 − s��1/2��i�ds

= �1/2 � i��
�

cosh����
�79�
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Substituting Eq. �74� into Eq. �78�, one can obtain

G =
��b − a�

8
pTHp �80�

where

H = �1/2 + 2�1
2��v̄1v̄1

T�N + N̄�v1v1
T + v1v1

T�N + N̄�v̄1v̄1
T�/

��1̃
2 cosh2��1��� + �1/2 + 2�2

2��v̄3v̄3
T�N + N̄�v3v3

T

+ v3v3
T�N + N̄�v̄3v̄3

T�/��2̃
2 cosh2��2��� �81�

a symmetric real matrix.
All the formulas developed so far are functions of the unknown

D3
0 and B3

0, the electric–magnetic field inside the interface crack.
By finding the stationary point of the saddle surface of energy
release rate with respect to the electromagnetic field inside the
crack �“energy method” �23��, one can have the following equa-
tions in terms of D3

0 and B3
0

�G

�D3
0 = H13�31

 + H23�33
 + H33�D3

0 + H34�B3
0 = 0

�G

�B3
0 = H14�31

 + H24�33
 + H34�D3

0 + H44�B3
0 = 0 �82�

which lead to

�D3
0 = D3

 − D3
0 = −

H13H44 − H14H34

H33H44 − H34
2 �13

 −
H23H44 − H24H34

H33H44 − H34
2 �33



�B3
0 = B3

 − B3
0 = −

H14H33 − H13H34

H33H44 − H34
2 �13

 −
H24H33 − H23H34

H33H44 − H34
2 �33



�83�

Then, the D3
0 and B3

0 can be calculated as

D3
0 = D3

 − �D3
0 = D3

 −
H14H34 − H13H44

H33H44 − H34
2 �13



−
H24H34 − H23H44

H33H44 − H34
2 �33



B3
0 = B3

 − �B3
0 = B3

 −
H13H34 − H14H33

H33H44 − H34
2 �13

 −
H23H34 − H24H33

H33H44 − H34
2 �33



�84�
Now, one may further express the energy release rate in more

explicit forms for two types of interface cracks: the impermeable
and permeable interface cracks �14,16�.

1. Impermeable interface crack, for which D3
0=0 and B3

0=0.
The energy release rate reads

Gimp =
��b − a�

8
��13

 ,�33
 ,D3

,B3
�H��13

 ,�33
 ,D3

,B3
�T

�85�
2. Permeable interface crack, for which the electric–magnetic

field, D3
0 and B3

0, inside the crack, is considered and given by
Eq. �83�. Substituting Eq. �83� into Eq. �80�, one can obtain
the energy release rate in a more explicit form as

Gperm =
��b − a�

8 � det�H̃22�

det�Ĥ�
��13

 �2 +
det�H̃12 + H̃21�

det�Ĥ�
��13

 �33
 �

+
det�H̃11�

det�Ĥ�
��33

 �2 �86�

where, det� � is the determinant of a square matrix; matrices H̃��

�� ,�=1,2� are the submatrices of H obtained by striking out the
�th column and the �th row, and

Ĥ = �H33 H34

H43 H44
� �87�

In Eq. �86�, one may clearly see that the applied mechanical load-
ing �13

 and �33
 has a coupling effect on the energy release rate.

3.4 Special Case: A Crack in a Monolithic Piezoelectro-
magnetic Medium. As an illustration, this section will show that
the solution to the Griffith type crack in monolithic
piezomagnetoelectro–elastic solids can be conveniently obtained
by setting the two media identical in the foregoing formulas of the
interface crack problem. Specifically, the bimaterial matrix D
=L1

−1+L2
−1=2L1

−1=2L2
−1=2L−1. Also, the N reduces to a 4�4

positive definite matrix, i.e.

N = N̄ = �2L−1�−1 = 1
2L �88�

The nonhomogenous Hilbert Eq. �49� then turns to

�+��x1� + �−��x1� = 2L−1ip�x1�, a 
 x1 
 b �89�

A solution which vanishes at infinity is �26�

���z� =
1

2�i
diag� 1

��z − a��z − b�


��
ab

�diag� 1
��z − a��z − b�


+
�−1

L−1�2ip�x1��dx1

x1 − z

�90�

If the applied loading is constant, then

���z� = diag�1 −
z − �a + b�/2

��z − a��z − b�
L−1�ip� �91�

Integrating Eq. �91�, results in

��z� = diag�z − ��z − a��z − b��L−1�ip� �92�

where the constant contributing rigid body motion has been
omitted.

Let

K = �KII, KI, KD, KB�T �93�

one then may easily show that the expression Eq. �93� becomes

K =���b − a�
2

p �94�

an interesting result that is similar in form to the conventional
isotropic SIF. This result is also valid for some bimaterials with
null bimaterial matrix W. Expressions �73� and �76� reduce, re-
spectively, to.

t�r� =� 1

2�r
K

and
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�u�r� = 4� r

2�
L−1K �95�

Equations �95� can also be directly obtained from the functions
�91� and �92�.

Equation �95� shows that the crack tip field for the monolithic
material is proportional to the inverse of the square root of r, i.e.

�iJ
�

1
�2�r

�96�

a result that is in agreement with the one obtained in Song and Sih
�18�.

The energy release rate reads as

G0 =
1

2
KTL−1K =

��b − a�
4

pTL−1p �97�

which can also be obtained by substituting Eq. �95� into Eq. �78�1.

4 Numerical Results and Discussion
The data for the piezoelectric and piezomagnetic properties of

the upper and lower media of the dissimilar bimaterial systems are
selected from the literature �4,18� and recorded in Table 1. The
constituents of each of the bimaterial systems are PEMO—elastic
materials.

Table 2 gives the results of some bimaterial parameters such as
c2 and c4 �defined by Eq. �102��, �1,2, and �3,4 �defined by Eq.
�103��. One can see from these numerical results that c2 and c4 are

larger than zero. �1,2, �3,4 are real numbers, and so are �1 and �2.
These observations are in agreement with the results proved in
Appendix A and show that four possible singularities of the form
r−�1/2�±i�1 and r−�1/2�±i�2 with real �1 and �2 exist around the inter-
face crack tip in PEMO–elastic bimaterials.

The results in Figs. 2 and 3 are used to demonstrate the influ-
ence of the bimaterial parameter c2 on the energy release rate, G.
These results show that the energy release rate increases as c2
increases both for a permeable and an impermeable interface
crack; the energy release rate of a permeable interface crack is
larger than that of an impermeable interface crack if only the
loading �33 �far field tension normal to the crack� is applied �Fig.
2�, while the energy release rate for a permeable interface crack is
the same as that for an impermeable interface when the loading is
only �13 �far field in-plane shear, Fig. 3�.

The bimaterial system Medium I—Medium II �1� ��1
=0.00950057, �2=0.00337206� will be used as an example in a
further study to illustrate the energy release behavior of interface
cracks in PEMO—elastic bimaterial solids.

Figure 4 plots the results of the energy release rate G of a
permeable and an impermeable interface crack under any combi-
nation of loading �33 and �13. It can be seen that the value of the
energy release rate, G, for an interface crack, if considered as
permeable, is larger than that of an interface crack if considered as
impermeable, for any given pair of ��33,�13�. Some details of this
observation are shown in Figs. 5 and 6, where Fig. 5 is the varia-
tion of energy release rate versus the change of applied loading

Table 1 Properties of piezoelectromagneto–elastic bimaterial systems

Properties Medium I

Medium II

�1� �2� �3� �4�

c11 �GPa� 86.74 166.0 202.0 226.0 250.0
c13 �GPa� 27.15 78.0 105.0 124.0 142.7
c33 �GPa� 102.83 162.0 194.2 216.0 237.3
c35 �GPa� 68.81 43.0 43.7 44.0 44.6
e11 �c /m2� 0.171 0.0 0.0 0.0 0.0
e13 �c /m2� −0.0187 0.0 0.0 0.0 0.0
e35 �c /m2� −0.0761 0.0 0.0 0.0 0.0
e31 �c /m2� 0.0 −4.4 3.08 −2.2 −1.32
e33 �c /m2� 0.0 18.6 13.02 9.3 5.58
e15 �c /m2� 0.0 0.0 8.12 5.8 3.48
�15 �N/Am� 550 550.0 174.1 275.0 385.0
�31 �N/Am� 580.3 550.0 165.0 290.2 406.2
�33 �N/Am� 669.7 699.7 209.9 350.0 489.8
�11 �c /Nm2� 39.21�10−12 11.2�10−10 78.6�10−10 56.4�10−10 34.2�10−10

�13 �c /Nm2� 0.86�10−12 0.0 0.0 0.0 0.0
�31 �c /Nm2� 0.86�10−12 0.0 0.0 0.0 0.0
�33 �c /Nm2� 40.42�10−12 12.6�10−10 88.5�10−10 63.5�10−10 38.5�10−10

�11 �Ns2/C2� 5.50�10−6 5.0�10−6 180.5�10−6 297.0�10−6 414.5�10−6

�33 �Ns2/C2� 10.0�10−6 10.0�10−6 541.0�10−6 83.5�10−6 112.9�10−6

Table 2 Bimaterial parameters

Bimaterial
parameters

Bimaterial systems

Medium I–Medium II�1� Medium I–Medium II�2� Medium I–Medium II�3� Medium I–Medium II�4�

c2 2.0104�10−3 2.4613�10−3 5.1277�10−3 7.5233�10−3

c4 1.6038�10−6 5.5027�10−6 7.6662�10−6 1.01275�10−6

�1,2 ±0.05976423 ±0.05662615 ±0.0971787 ±0.11975132
�3,4 ±0.02119044 ±0.04142584 ±0.0284918 ±0.02657485
�1

0.00950057 0.00900272 0.01541805 0.01896868
�2

0.00337206 0.00658936 0.00453338 0.00422852
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�33 for two given values of �13, and Fig. 6 is the variation of the
energy release rate versus the change of applied loading �13 for
three given values of �33.

Figure 7 shows the results of energy release rate values for an
impermeable interface crack under any combined electric–
magnetic loading �D3 ,B3�. An interesting phenomenon that can be
seen here is that all the values of energy release rate G are less
than or equal to zero. Negative energy release rates are physically
impossible. This observation implies that a pure electric–magnetic
loading �D3 ,B3� would be expected to retard the propagation of an
interface crack in PEMO–elastic bimaterial systems. This retarda-
tion mechanism will be more clearly seen in the following discus-
sions. Moreover, this retardation phenomenon has also been re-
ported in the literature for cracks in monolithic electromagnetic
materials �17�.

Figures 8–11, respectively, demonstrate the influence of the ap-
plied electric or magnetic field on the energy release rate G under
applied mechanical tensile loading �33. Figure 8 is the variation of
G versus the applied loading �33 for two given values of D3
applied in different directions, namely, positive direction �D3
�0� and negative direction �D3
0� and Fig. 9 is the variation of

G versus any combination of loading ��33,D3�. Figure 10 is the G
versus the applied loading �33 for two given values of B3 and Fig.
11 is G versus any combination of loading ��33,B3�. The results in
Figs. 8 and 10 show that for a given D3 or B3, the applied me-
chanical loading �33 has to exceed a certain value in order to
reach a positive G. Here, we may call this value the thrust value,
denoted as �33

thr.
Figures 8 and 10 also show that the values of the �33

thr are dif-
ferent for the applied D3 or B3 with the same amplitudes but
different directions. One can see that the direction of applied D3
or B3 has an influence on the energy release rate, G. The influence
of the direction of the electric or magnetic field can be viewed
more clearly in Fig. 12, which shows the variation of G versus �33
under the combined influence from a given �D3 ,B3�. Here, a more
subtle observation needs to be pointed out. The results in Fig. 7
show that the bigger the value of pure applied D3 or/and B3 is, the
bigger a negative value G reaches. But this does not mean that the
bigger value of applied D3 or/and B3 always makes the energy
release rate G smaller �than the corresponding G with a smaller
value of applied D3 or/and B3� when a mechanical loading is
present. This can be easily verified from the results in Figs. 8 and

Fig. 2 Energy release rate versus bimaterial constant c2 under
pure mechanical loading �33

Fig. 3 Energy release rate versus bimaterial constant c2 under
pure mechanical loading �13

Fig. 4 Energy release rate for the combined mechanical load-
ing �13 and �33

Fig. 5 Energy release rate versus �33 for a given �13
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10. Particularly in Fig. 10, when �33
2.8�105, the G is bigger
for B3=0.25�10−2 than for B3=0.5�10−2. But the trend reverses
when �33�2.8�105.

One can further see that the surface of G is not symmetric with
respect to the plane D3=0 or B3=0, as shown in Figs. 9 and 11. It
is possible that the value of G with D3=0 or B3=0 is smaller than
the value of G with D3�0 or B3�0 when �33 reaches a certain
value. This result can be more explicitly observed from the results
in Fig. 11. Therefore, an important conclusion which can be
drawn here is that the applied D3 and B3 do not always contribute
a negative value to the energy release rate G when an applied
mechanical loading �33 is also present. This conclusion further
suggests that the applied electric and magnetic loading does not
always retard the propagation of an interface crack. Instead, under
certain conditions of the applied mechanical loading, �33, they
may actually speed the propagation of an interface crack.

Figures 13–15 study the influence of D3 or B3 on the energy
release rate, G, under mechanical applied shear loading �13. Fig-
ure 13 is the variation of G versus any combination of ��13,D3�.
One can see that the surface of G is symmetric both with respect
to the axis �13=0 and the D3=0. This observation indicates that
the direction of D3 has no effect on the energy release rate G if the
applied loading is only �13 and B3=0. This result can be easily

Fig. 6 Energy release rate versus �13 for a given �33

Fig. 7 Energy release rate under pure electric and magnetic
applied loading

Fig. 8 Energy release rate versus �33 for a given D3

Fig. 9 Energy release rate under combined mechanical �33
and electrical D3 loading

Fig. 10 Energy release rate versus �33 for a given B3

Journal of Applied Mechanics JULY 2007, Vol. 74 / 623

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



seen from the top graphic in Fig. 14. A similar tendency can also
be found for the case when only �13 and B3 are applied, as shown
in the top graph of Fig. 15. As a comparison, the results with
�33�0 are also plotted at the bottom of Figs. 14 and 15. The
results in Figs. 13–15 also show that the applied electric �D3�
or/and magnetic �B3� field�s� usually retard�s� the propagation of
an interface crack when the applied mechanical loading is only the
shear loading �13.

Figures 16 and 17 plot the results of the energy release rate G
under both tensile and shear in-plane applied loading. Figure 16 is
the G versus ��33,�13� under simultaneously given D3 and B3,
and Fig. 17 is a particular case for �13= ±3.25�105. These results
demonstrate that different combinations of the directions of D3
and B3 produce different results of the energy release rate G. For
a given �33 and �13, there exist a direction for D3 and B3 that
makes the G maximum. One can also see that for any given D3
and B3, the G is symmetric with respect to �13. This observation,
together with similar observations in Figs. 13 and 15, show that
the direction of in-plane shear loading �13 has no effect on G.
Although when individually applied with �33=0, the direction of
D3 or B3 does not affect the G as shown in Fig. 13, the top of Fig.
14, and the top of Fig. 15, the directions of D3 or B3 do have
effects on the G when they are applied together as clearly shown
in Fig. 16 and 17, say, values are different when directions of D3
and B3 are different with �33=0 and �13= ±3.25�105, as de-
picted in Fig. 17.

5 Conclusions

Four possible singularities of the form r−�1/2�±�1 and r−�1/2�±i�2

exist for the fields around an interface crack tip in dissimilar
PEMO—elastic bimaterial media. The bimaterial parameters �1
and �2 are proven to be real numbers for practical materials. The
electric—magnetic field inside the crack is solved by finding the
stationary point of the saddle surface of the energy release rate
with respect to the electromagnetic field inside the crack. The
energy release rate, G, can be expressed in compact form both for
impermeable and permeable interface cracks. The value of G in-
creases as the bimaterial parameter c2 �defined by Eq. �102� in
Appendix B� increases. When the only applied mechanical load-
ing is �13 �in-plane shear�, the directions of separately applied D3

Fig. 11 Energy release rate under combined mechanical �33
and magnetic B3 loading

Fig. 12 Energy release rate under loading �33 for a given
„±B3 , ±D3…

Fig. 13 Energy release rate under loading �13 and D3

Fig. 14 Variation of energy release rate versus �13: top for a
given D3 only; bottom for a given pair „D3 ,�33…
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and B3 do not affect the value of G while the directions of simul-
taneously applied D3 and B3 do. But the directions of applied D3
and B3 always have influences on the value of energy release rate
G if the applied mechanical loading involves �33 �tension�. There
exist a pair of directions of D3 and B3 which makes the G the
maximum for each given mechanical loading. Pure applied
electric–magnetic loading lowers G and therefore is expected to
retard the propagation of an interface crack. However, the
electric–magnetic loading does not always retard the propagation
of an interface crack when the mechanically applied loading in-
cludes �33 �tension�. They can also foster the propagation of an
interface crack if the applied mechanical loading reaches a certain
value. The results or observations in this paper are still fundamen-
tal for the investigation of dissimilar piezoelectromagneto–elastic
bimaterial solids. There are still more studies needed on this sub-
ject, such as in finding the criteria for the propagation of an inter-
face crack, in understanding how the electric and magnetic fields
inside an interface crack would interfere with the measured sig-

nals in broad band probes, etc. Nevertheless, the results in the
current study may serve as a basis for more complex investiga-
tions.
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Appendix A. Bimaterial Constants: Real �1, �2

To ensure a nontrivial solution for the homogeneous Hilbert Eq.
�50�, the following condition should be satisfied

�N + e2�i�N̄� = �N − e2��N̄� = 0 �98�

where �=1/2− i�. Substituting Eq. �45�2 into Eq. �98� leads to

Fig. 16 Variation of energy release rate versus „�33,�13… for a
given „D3 ,B3…

Fig. 17 Variation of energy release rate versus �33 for a given
„�13,D3 ,B3…

Fig. 15 Variation of energy release rate versus �13: top for a given B3 only;
bottom for a given pair „B3 ,�33…
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�W + i�D� = 0 �99�

where

� =
e2�� − 1

e2�� + 1
, or � = tanh���� �100�

Since N is Hermitian, from the definition of Eq. �100� one may

easily see that if � and �̄ are roots of Eq. �99�, so are −� and −�̄.
Therefore, Eq. �99� should have the form

p�i�� = �i��4 + 2c2�i��2 + c4 = 0 �101�

where

2c2 = − 1
2 tr�D−1W�2, c4 = ��D−1W�� �102�

Then, the roots of Eq. �101� can be expressed as follows

�1,2 = ± �c2 + ��c2�2 − c4

�3,4 = ± �c2 − ��c2�2 − c4 �103�

These �s can be verified as real numbers. Actually, for the square
matrices D and W, one has ��D−1W��= �D−1�� �W�, but �W��0, a
property of an anti-symmetric matrix of even order, and �D−1�
�0, a result from Eq. �27� and �28�. So c4= ��D−1W���0. Math-
ematically, �c2�2 could be less than c4. But for practical PEMO—
elastic bimaterials, if �c2�2
c4, then c2±��c2�2−c4 would be
complex numbers with nonzero real and imaginary parts. Conse-
quently, all the �s would be complex numbers, as would all the
�s. This would contradict the fact in the literature that at least two
singularities should have the form of r−1/2±i�̃ with real �̃, in the
case of bimedia with no piezoelectric/piezomagnetic material
properties. Hence �c2�2�c4, as shown in Table 2. Further, the c2
also should not be less than zero for practical materials. If c2 is
less than zero, one could find that all the �s in Eq. �103� would be
pure imaginary numbers. Then from Eq. �100�, all the singularities
would have the form r−1/2±�̂ with real �̂. This assertion would also
contradict the fact that for bimedia with no piezoelectric/
piezomagnetic material properties, at least two singularities have
the form of r−1/2±i�̃ with real �̃. Hence, c2�0 �also shown in Table
2 for practical PEMO—elastic bimaterials�. Therefore, one can
conclude that the �1,2, �3,4 are real numbers, and so are the �1 and
�2. One may realize that c2 and c4 are simultaneously equal to
zero if W is null, a special case similar to the one discussed by Qu
and Li �13� for conventional dissimilar anisotropic bimaterials.

Appendix B. Contour Integral for �„z…� and �„z…
The method used here can be viewed as the generalization of

the technique in Muskhelishvili �Ref. �28� Secs. 110, 70�, which is
for a single equation. Let � be a contour which includes the arc
ab, and let this contour shrink into the arc ab �Fig. 1�, then for the
q�x1� constant

�
�

�X����−1N−1

� − z
d� =�

ab

�X+�x1��−1N−1

x1 − z
dt +�

ba

�X−�x1��−1N̄

x1 − z
dx1

=�
ab

�X+�x1��−1N−1

x1 − z
dx1 −�

ab

�X−�x1��−1N−1

x1 − z
dx1

�104�

From Eq. �50�, one can have

X−�x1� = − N̄−1NX+�x1�, a 
 x1 
 b �105�

Substituting Eq. �105� into Eq. �104� leads to

�
�

�X����−1N−1

� − z
d� =�

ab

�X+�x1��−1N−1�I + N̄N−1�
x1 − z

dx1 �106�

Then,

�
ab

�X+�x1��−1N−1

x1 − z
dx1 =�

�

�X����−1N−1�I + N̄N−1�−1

� − z
d�

=�
�

�X����−1�N + N̄�−1

� − z
d� �107�

but

J =
1

2�i�
�

�X����−1�N + N̄�−1

� − z
d� = �X�z�−1v − �� + ���v−1�N

+ N̄�−1 �108�

where � and � are defined in Eq. �64�. Therefore

���z� =
X�z�
2�

� 2�iJ = v�I −
��z;�1,�2�

��z − a��z − b�
�� + ���v−1�N

+ N̄�−1ip �109�
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Quasi-Static Biaxial Plastic
Buckling of Tubular Structures
Used as an Energy Absorber
The aim of this experimental study is to improve the energy absorption capacity of
tubular metallic structures during their plastic buckling by increasing the strength prop-
erties of materials. Based on a novel idea, a change in the plastic strength of materials
could be predictable through the loading path complexity concept. An original experi-
mental device, which represents a patent issue, is developed. From a uniaxial loading, a
biaxial (combined compression–torsion) loading path is generated by means of this de-
vice. Tests are carried out to investigate the biaxial plastic buckling behavior of several
tubular structures made from copper, aluminum, and mild steel. The effects of the loading
path complexity, the geometrical parameters of the structures, and loading rates (notably
the tangential one) on the plastic flow mechanism, the mean collapse load, and the energy
absorbed are carefully analyzed. The results related to the copper and aluminum metals
show that the plastic strength properties of the tubes crushed biaxially change with the
torsional component rate. This emphasizes that the energy absorption improves with
increasing the applied loading complexity. However, the energy absorbed data for the
mild steel tubular structures do not demonstrate the same sensitivity to the quasi-static
loading path complexity. �DOI: 10.1115/1.2424470�

Keywords: plastic buckling, combined compression-torsion quasi-static loading, energy
absorber

1 Introduction

It is well known that the most efficient energy absorber device
should maintain the maximum and almost stable allowable force
throughout the greatest stroke length. The problem of safe vehicle
design with maximum impact energy absorption is an intensive
research subject: e.g., vehicles crashworthiness analysis problem
�e.g., Refs. �1–4��. As a matter of fact, the energy absorbed during
plastic deformation is one of the most significant factors dealing
with the energy dissipating systems. Large plastic behavior of
mechanical elements �plates, shells, tubes, stiffeners,..� when sub-
jected to various types of load has been the subject of several
research programs. They aim to understand the deformation
modes, then the energy absorption patterns, and the resulting fail-
ure during collapse. For a given structure, this energy depends
exclusively on main parameters: the magnitude, type, and method
of application of loads, strain rates, deformation or displacement
patterns, and material properties. Thus, the plastic flow has to be
properly determined through experimental procedures to thor-
oughly understand the structure response during collapse.

In the recent decade, renewed interest has been also observed in
the application of structures �as materials for energy absorber de-
vices, like honeycombs, foams, etc.� �for example, Refs. �5,6��.
Beside the mass efficiency of such materials, their mechanical
characteristics in compression demonstrate that they can be con-
sidered as an excellent energy absorber, offering an obvious pla-
teau of almost constant force in the uniaxial compressive force–
displacement curve �7–9�. In the light of this fact, the adopted
solutions focus on the design of passive energy absorbing sys-
tems, which are frequently based on engineering materials always

looking for a high-specific energy absorption ratio. Moreover, pas-
sive energy absorption devices are designed to successfully work
in predefined collision scenarios.

According to such demands, the plastic buckling of tubular
structures represents an appropriate compromise for a classical
problem in solid mechanics. The literature shows that it provides
an inexpensive and adaptable system �3,10,11�. In general, it of-
fers one of the best devices in absorbing energy due to the stabil-
ity of the average collapse load throughout the entire collapse
process and due to the available stroke per unit mass. This is due
to the fact that all of the tube material participates in the absorp-
tion of energy by plastic bending and stretching combination.

In a recent work �12�, an experimental methodology has been
developed where the plastic flow mechanism of the axial collapse
of metallic hollow cylinders is controlled. Several tubular struc-
tures, made from copper and aluminum, are axially crushed under
quasi-static compressive loading. As it is well known, the defor-
mation mode of hollow cylinders is principally controlled by
means of two geometrical parameters �=Rm / t and �=Rm /L
�Rm=mean radius, L=initial length, and t=thickness�. From the
energy absorption viewpoint, the axisymmetric mode provides en-
hancement with respect to the diamond fold mechanism for a
given cylinder. Hence, the effects of both parameters on the mean
collapse load and the energy absorbed have been studied. Thereby,
two different structural solutions �fixed ends and subdivided� have
been developed for encouraging the axisymmetric mode. With the
subdivided solution, it has been found that the energy increases up
to 21% compared to a classical uniaxial case for copper tubes.

Now, an important question becomes justifiable according to
the following issue: How one can further increase the energy ab-
sorption for a tubular structure crushed axially having appropriate
geometrical parameters, i.e., encouraging the axisymmetric mode?

Contrary to the standard passive systems, the proposed solution
consists of creating a particular loading condition, which can be
started during the deformation process. Actually, the philosophy
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of our step depends upon a novel idea, which aims to provoke a
extra absorption of energy within a loaded structure via the load-
ing path complexity notion.

Therefore, the intention of the present work is to offer further
improvement in the energy absorption capacity of a tubular struc-
ture during deformation. Hence, a patented device, with which a
combined compression–torsion biaxial loading can be generated
over the tubes, is exploited. In fact, the strength properties of the
loaded material change because of this loading type. Moreover, an
investigation of interaction effects between the loading path com-
plexity and the principal geometrical parameters is performed to
interpret the obtained results. Thus, an extensive experimental
study of plastic buckling is conducted using several structures
made from copper, aluminum, and mild steel having different di-
mensions �i.e., different � and � values�. An integrity measure of
the mean collapse load and consequently the corresponding en-
ergy absorbed show particularly the efficiency of the developed
idea in improving the energy absorbed. As a result, the higher
biaxial loading complexity, the greater the energy absorbed in
copper and aluminum cases for a given structure. However, under
the quasi-static loading condition, the mild steel behaves with a
certain passivity vis-à-vis the loading path complexity.

It is important to emphasize that the logical continuation of this
work is oriented toward a dynamic loading study. Considerable
results are obtained showing some new remarkable results notably
in the case of aluminum specimens �13,14�.

2 General Scope
The main goal of this work is originated following the panoply

of uniaxial solutions adopted, which made it possible to treat care-
fully the effect of the geometrical parameters on the plastic flow
and the corresponding energy absorbed, therefore giving a maxi-
mum increase of 21% vis-à-vis the uniaxial buckling of copper
structures �12�.

In order to greater intensify the energy absorption capacity, it is
now obvious that it is necessary to develop a new approach. Ac-
cordingly, an original device, referred to as “absorption par

compression-torsion plastique” Patent No. WO 2005090822�
�ACTP�, is designed and tested. It is a simple mechanical assem-
bly offering the advantage to function in quasi-static and dynamic
modes. It transforms an external uniaxial compression load into a
biaxial combined compression–torsion one �Fig. 1� within a
loaded structure. It is particularly intended for industrial applica-
tions. Based on the same reference of crushing displacement for a
given tube compressed uniaxially, the ACTP, as its fundamental
role, allows a substantial enhancement in the energy absorption. In
reality, a change in the strength properties of collapsed materials
can be observed. In other words, this change is based undoubtedly
on its work hardening evolution. The latter is mainly governed by
the loading path complexity, which seems to be related to several
�or one� mechanisms responsible for strength enhancement. Con-
sequently, they play an important role in the local behavior, pre-
cisely, at the dislocation level probably generated by the slip sys-
tems multiplication phenomenon. In order to appropriately
understand the effect of these key local mechanisms on the overall
strength improvement of the structure, a research program is
planned to be performed in the near future. This is due exclusively
to the torsional component �generated by the ACTP�, together
with the compression controlled naturally by the external loading.
In a precise manner, the plastic buckling becomes more and more
complicated since three different strains �compressive, bending,
and shear� take place concurrently, leading to a more complex
load/unload condition.

Created by the proposed apparatus, two loading situations are
considered. The first one involves a loading path, denoted as in-
tegral loading, where the compression and torsion components
are applied simultaneously. Nevertheless, the second loading situ-
ation, referred to as partial loading, is characterized by the appli-
cation of a purely uniaxial compression �from the beginning up to
a chosen distance� followed by biaxial combined compression–
torsion loading. To investigate the rate of change of the torsional
component on the collapse operation, the device provides an op-
portunity to test several rates. The generation of such rates will be
given in the next paragraph.

Fig. 1 Brief view of the ACTP device
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3 Description of the New Device
The ACTP device, illustrated schematically in Fig. 1, is consti-

tuted from a tempered steel hollow cylindrical body �1�, on which
four parallel helicoid grooves are machined. These grooves are
characterized by a well defined inclination angle. The importance
of the rate of change of torsional component in the collapse pro-
cess within this device can be investigated. Therefore, three inter-
changeable cylindrical bodies: �1� are designed giving conse-
quently three distinct propeller inclination angles of 30 deg,
37 deg, and 45 deg. The helicoid grooves are intended to receive
a crosspiece �7� provided with four pivots and to guide it in its
movement of descent by inculcating a rotational movement.
Hence, the two principal parts of this apparatus form a slide–
helicoid connection. This mechanism permits transformation of an
initial external load of uniaxial nature into a biaxial combined
compression–torsion one. In order to minimize the friction in the
contact zone between the grooves and the crosspiece �7�, the
crosspiece pivots are equipped with bronze rollers �2�.

Obviously, the crushed tube �9� is mutually dependent on the
crosspiece and cylindrical body by the intermediary of a mechani-
cal tube extremities fixation system. The system is made princi-
pally from two hard steel disks �11�. Two half-conical shells �10�
and a clip �13� over which these conical surfaces are machined
and assembled in opposition attached to the disk �12�, maintain
the necessary tightening pressure in locking of both crushed tube
extremities. Therefore, during its biaxial deformation, the speci-
men �9� is totally conditioned by the crosspiece in its movements
of descent and rotation. Moreover, the assembling and the disas-
sembling of the specimens within the ACTP are relatively simple.

With the ACTP, it is considerably difficult to evaluate the fric-
tion effect on the deformation operation during the biaxial tests.
However, an approximate method is proposed to define its effect
by means of the total absorbed energy. Actually, the following
experimental methodology is adopted. As it is imposed by the
ACTP design, a rolling friction type is used. Hence, six uniaxial
crushing tests are realized using copper tubes of small initial
lengths �giving �=0.6�. This value can be justified by the fact that
it permits systematic generation of the axisymmetric deformation
mode. These tubes are crashed under two different experimental
conditions. In the first case, two uniaxial crushing tests of the
free-ends situation are conducted. The average force–
displacement of these tests is used to define the absorbed energy.
The other four tests are carried out with the ACTP using the in-
clination angle of 45 deg �highest friction case�, but with the ex-
istence of the crosspiece and without the tube extremities fixation
system. Consequently, this leads to a classical free-ends uniaxial
plastic buckling. Moreover, in order to limit the effect of friction
on the contact surfaces between the crosspiece/specimen due to
their relative rotation, an appropriate greasing is therefore used.
Finally, the maximum recorded friction effect is about 6% as
shown in Fig. 2.

4 Experimental Program

4.1 Tested Materials. In this study, three metallic materials
are investigated, which are: commercial hardened copper �tensile
yield stress: 310 MPa, Young’s modulus: 117,000 MPa�, annealed
aluminum alloy �tensile yield stress: 150 MPa, Young’s modulus:
70,000 MPa�, and mild steel �tensile yield stress: 220 MPa,
Young’s modulus: 208,000 MPa�, designated according to French
standard as NFA51120 and AFNOR A506411, A50-451 �6060�
and NFA 49 330 378 504523 NBK122, respectively. Note that
each material has a good ductility.

The hollow cylindrical specimens employed have the following
dimensions: two internal diameters �d� are chosen: 30 mm and
38 mm with 1 mm thickness �t�, leading, respectively, to the fol-
lowing radial geometrical ratios ��=Rm / t�: 15.5 and 19.5, where
Rm is the mean tube radius. Characterized by three longitudinal
ratios ��=Rm /L�: 0.1, 0.12, and 0.14, two initial tube lengths are

defined for these metals.
All the specimens are crushed quasi-statically under compres-

sive loading. They are not subjected either to heat treatment or to
special machining operation. The defined lengths of the material
cylinders used with their ratios are summed up in Table 1.

4.2 Experimental Procedure. All of the employed tubular
structures are loaded between the two parallel platens of an In-
stron Universal Testing Machine �type 1186� under two compres-
sive constant cross head speeds, namely, 5 mm/min and
500 mm/min at room temperature. Each employed compressive
speed gives undoubtedly a quasi-static loading condition. The ma-
chine, where the ACTP is fixed, is connected to an acquisition
chain to simultaneously record the force and the corresponding
displacement during tube crushing operation.

In order to ensure the experimental results accuracy, each test is
repeated twice under the same experimental conditions �applied
speed and temperature�. If the differences between the two re-
sponses exceed 3%, then another test should to be performed.

5 Results and Discussion
Three distinct deformation modes are regularly recorded, noted

diamond mode �DM�, axisymmetric mode �AM� and mixed mode
�XM�. Two deformation nuances are also obtained. Actually, the
majority of the tests generates a mixed mode. The proportions of
axisymmetric and diamond in the mixed mode differ from one
material to another and/or from one rate of change of torsional
component to another. Hence, one assigns the notation AXM to
the mixed mode with axisymmetric predominance and the DXM
to the mixed mode with diamond dominance. At the end of the
crushing process for the three materials used, Figs. 3–5 collect
typical deformed specimens loaded under two uniaxial loading
situations �free ends and fixed ends: considered henceforth as
biaxial-0 deg� and biaxial of the three inclination angles �30 deg,
37 deg, and 45 deg�. Moreover, Tables 2–4 summarize the defor-
mation modes and the corresponding mean collapse load �Fav�,
obtained under three different biaxial loading paths controlled es-
sentially by the three inclination angles using the two cross head
speeds �5 and 500 mm/min�. In order to determine the mean col-
lapse load with a maximum of objectivity, especially for these

Fig. 2 Friction effect estimation within the ACTP device

Table 1 Chosen lengths of the material tubes with their geo-
metrical ratios

Material used Copper Aluminum Mild steel

Parameter � 15.5 19.5 15.5 19.5
Parameter � L=136 mm 0.11 0.14 0.11 0.14

L=160 mm 0.1 0.12 0.1 0.12
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strain hardened metals, all recorded forces for the whole crushed
distance are used to determine the mean collapse load.

The typical curves of the load and energy absorbed evolutions
are presented in Figs. 8–11.

Tests are conducted under biaxial loading in order to validate
the capacity of the ACTP in increasing the strength properties of
the deformed material �i.e., improvement of the energy absorp-
tion� and to justify its efficiency. Indeed, examination of the re-
corded results exhibits a remarkable influence of the ACTP on the
crushed structures behavior with respect to similar structures de-
formed uniaxially, i.e., enhancements in the Fav, Fmax �peak col-
lapse load�.

5.1 Deformation Mechanisms. As far as the deformation
mode is concerned, a rough similarity is pointed out between the
deformation modes generated by the copper and aluminum speci-
mens. In fact, with increasing in the loading path complexity, the
AM and the AXM take place rather largely in the copper case
�Fig. 3�, whereas, for the aluminum, the XM and DM are obvi-
ously observed in Fig. 4.

Moreover, each test presents its own deformation mode for a
given loading configuration. For the copper specimens �Table 2�,
the AM �or DM� is recorded in the uniaxial free-ends case and the
AXM or XM under the biaxial loading �Fig. 3�. The last types are
characterized by a clear transition from the AXM toward XM,
passing, respectively, from an inclination angle of
30 deg to 37 deg and finally to 45 deg. This observation remains
also valid for the aluminum specimens �Table 3�, i.e., the increase
in the inclination angle supports the emergence of the diamond
mode. The passage from 30 deg to 45 deg induces a deformation
transition from the XM toward the DM �Fig. 4�. Contrary to the
uniaxial loading where the deformation modes are practically not
affected by the loading rate, the deformation mode is strongly
sensitive to the rates of change of the torsional component, espe-
cially for the inclination angle of 45 deg.

This observation is different in the case of mild steel �Fig. 5 and
table 4�, i.e., the increase in the inclination angle supports the
emergence of the XM mode. The passage from 30 deg to 45 deg
induces a deformation transition from the XM toward DXM, con-
trary to the uniaxial loading where the deformation modes are of

Fig. 3 Typical examples of the deformation modes related to the copper specimens having: „i…
�=15.5 and „ii… �=19.5 with different crushing types: „a… free-ends „DM…; „b… biaxial-0 deg „AM…;
„c… biaxial-30 deg „AXM…; „d… biaxial-45 deg „XM…; and „e… biaxial-37 deg „XM…

Fig. 4 Deformation modes concerning the aluminum speci-
mens during their collapse under various loading paths: „a…
free-ends „AXM…; „b… biaxial-0 deg „AXM…; „c… biaxial-30 deg
„XM…; „d… biaxial-37 deg „DM…; and „e… biaxial-45 deg „DM…

Fig. 5 Deformation modes of the collapsed mild steel speci-
mens under various crushing types: „a… free-ends „DM…; „b…
biaxial-0 deg „DM…; „c… biaxial-30 deg „XM…; „d… biaxial-37 deg
„DXM…; and „e… biaxial-45 deg „DXM…

Table 2 Deformation modes and the mean collapse loads in kN for the copper tubes having different geometrical parameters
under various loading situations using two cross head speeds

Copper
�V, mm/min�

Free ends Biaxial-0 deg Biaxial-30 deg Biaxial-37 deg Biaxial-45 deg

5 500 5 500 5 500 5 500 5 500

�=15.5 �=0.11 DM 16 DM 16 AM 17.6 AM 17.6 AXM 19.2 AXM 19.2 XM 19.4 XM 19.4 XM 22 XM 22
�=0.1 DM 15.8 DM 15.8 AM 17 AM 17 AXM 18.6 AXM 18.6 AXM 18.9 XM 19 XM 21.6 XM 21.4

�=19.5 �=0.14 DM 17 DM 17 AXM 17.8 AXM 17.8 AXM 18.8 AXM 18.8 AXM 19.4 XM 19.4 XM 22.4 XM 22.4
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DM type. Hence, one can generally conclude, for a given material,
that the deformation mode is significantly influenced by the rates
of change of the torsional component.

The collapsed aluminum structures present three distinct defor-
mation modes: AXM, XM, and DM �Fig. 4�. It is important to
keep in mind that the aluminum tubes are often a matter of mac-
roscopic wall cracking, taking place at the plastic hinges. Such a
cracking phenomenon does not take place either in copper or in
mild steel specimens. This would be related to their intrinsic me-
chanical behaviors notably under biaxial loading.

In order to thoroughly study the deformation mode under biax-
ial loading condition, the biaxial-45 deg extreme case is consid-
ered as a typical example. In Fig. 6, some tube sections demon-
strate the deformation progression of the copper tube �with �
=15.5 and �=0.11�. In fact, the particular importance of the geo-
metrical parameters �� and �� is obvious in controlling the defor-
mation mode at the beginning of the biaxial crushing process
where the applied load axis coincides with that of the tube. This

actually gives up to six folds of AM as shown in Fig. 6�a�.
Thereafter, with the crushing progression, the torsional compo-

nent becomes important and provokes a deviation with respect to
this co-axiality, therefore leading to the appearance of the first fold
of MD as clearly illustrated in Figs. 6�a� and 6�b�. This is due to
the fact that with the enhancement in the torsional component
effect over the remaining nonbuckled length, the geometrical pa-
rameters, notably �, cannot subsequently be the principal factors
defining the deformation mode. Thus, a competition phenomenon
occurs between these parameters and the torsional component ef-
fect. Obviously, the tangential disturbance becomes progressively
more significant with collapse development. Undoubtedly, this
leads to the DM up to the final collapse of the tubular structure
�Fig. 6�c��.

5.2 Collapse Loads and Energy Absorbed. Let us now dis-
cuss the evolutions of the applied crushing load and the energy
absorbed. First of all, it is important to study the loading rate
influence on the material response. It is found that the responses
of the tested materials are not affected by the employed loading
rate range �Tables 2–4�. As a typical example, load–deflection
curves, in Fig. 7, reveal almost the same loading evolution during
the copper tube collapse under the two speeds �5 and
500 mm/min� using the biaxial-37 deg �i.e., 37 deg inclination
angle� case.

Figure 8 shows the crushing load evolution versus axial dis-
placement in the case of the copper tubes having �=15.5, under a
speed of 500 mm/min. Two loading situations are selected: the
uniaxial free ends and the partial biaxial-30 deg. It is clear, in
spite of the difference in these applied loading paths, that the

Table 3 Deformation modes and the mean collapse loads in kN for the „a… aluminum tubes and „b… mild steel tubes having
different geometrical parameters under various loading situations using two cross head speeds

�a�
Aluminum

�V, mm/min�

Free ends Biaxial-0 deg Biaxial-30 deg Biaxial-37 deg Biaxial-45 deg

5 500 5 500 5 500 5 500 5 500

�=15.5 �=0.11 XM 10.5 XM 10.5 XM 10.8 XM 11.8 XM 11.6 XM 11.8 DM 12 DM 11.8 DM 12.2 DM 12.5
�=0.1 DXM 10.4 DXM 10.5 XM 10.6 XM 11.7 XM 11.5 XM 11.5 DM 11.6 DM 11.6 DM 12 DM 12

�b� Mild steel
�V, mm/min�

Free ends Biaxial-0 deg Biaxial-30 deg Biaxial-37 deg Biaxial-45 deg

5 500 5 500 5 500 5 500 5 500

�=19.5 �=0.14 XM 19 DXM 21.1 DX 20.4 DM 21.8 DXM 21.6 DXM 22 DM 22 DM 22 DM 22.1 DM 22.6
�=0.12 XM 20.6 DXM 21.4 DM 20.3 DM 22 DXM 20.1 DXM 21.3 DM 21.7 DM 22.2 DM 21.5 DM 22.6

Table 4 Energy absorbed under different biaxial loadings for
two axial deflections of 30 and 60 mm for copper and aluminum
structures.

Crashed distance
Loading path type

Aluminum Copper
Absorbed energy

�kJ/kg�
Absorbed energy

�kJ/kg�

30 mm 60 mm 30 mm 60 mm

Biaxial-0 deg 20 19.5 41.7 40.7
Biaxial-30 deg 22.7 22 45.6 42.7
Biaxial-45 deg 26.2 25 47 45.8

Fig. 6 Photos showing the deformation mode progression under the biaxial-45 deg
case for the copper tubular structure having �=15.5 and �=0.11
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nature of these curves is moreorless similar. An increase of 3.2 kN
in the mean collapse load �Fav� in favor of the biaxial loading is
recorded. Hence, this gives an enhancement of 20%.

However, the two peak collapse loads remain unchanged. This
is due to the partial loading nature under which the torsional com-
ponent value is equal to zero up to a certain axial deflection ��
=15 mm�. Then, the biaxial combined compression–torsion load-
ing starts to be applied. Under this loading complexity, an addi-
tional hardening can be provoked, notably when the material is
severely loaded by three different strains: compressive, bending,

and shear.
The deformation mode of the copper tubes evolves, conse-

quently, passing from the DM under uniaxial loading to the AXM
at biaxial loading �Fig. 3�i��. This observation, in addition to the
increase in the Fav, can interpret the enhancement in the energy
absorption for these tubes as shown in Fig. 8�b�. As mentioned
above, the absorbed energies under these loading conditions are
identical during the first 15 mm; then these curves diverge when
the combined compression–torsion loading is entering into action.
Hence, the curve shows an additional absorption of energy in the
biaxial-30 deg case. As a typical example, for �=85 mm, the ab-
sorbed energies under uniaxial and biaxial-30 deg are, respec-
tively, 1.35 kJ and 1.62 kJ, giving an enhancement of 20%.

For the copper tubes having �=15.5, Fig. 9�a� demonstrates the
load–deflection curves for four different collapse situations: three
integral biaxial loadings with inclination angles of 30 deg, 37 deg,
and 45 deg, and the biaxial-0 deg employing a speed of
5 mm/min. It is recognized that the higher the inclination angle
�i.e., the higher the loading complexity�, the greater the rates of
change of torsional component, the greater the mean collapse load
and the corresponding energy consequently absorbed. As a result,
the biaxial-45 deg gives the highest Fav and energy absorbed
which has also been confirmed in Ref. �15�.

This finding is systematically raised even for the mode DXM.
In reality, the latter is characterized by the emergence of a strong
proportion of DM, especially at the end of collapse. Note that the
Fav value is 21.6 kN for the biaxial-45 deg, whereas it is equal to
17 kN for the biaxial-0 deg. Thus, a difference of 4.6 kN is re-
corded between these two cases giving an increase of 27%. As
noted above, the curves in Fig. 9�b� reveal clearly that the biaxial-

Fig. 7 Loading rate effect on the collapse loading evolution
versus the axial deflection for the copper tubes in biaxial-
37 deg case

Fig. 8 Evolution of: „a… collapse load; and „b… energy absorbed
versus the axial deflection for the copper tubes in uniaxial
„free-ends… and biaxial-30 deg cases

Fig. 9 Evolution of: „a… collapse load; and „b… energy absorbed
versus the axial deflection for the copper tubes „�=15.5… in
biaxial „0 deg, 30 deg, 37 deg, and 45 deg… cases
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45 deg case absorbs the greatest amount of energy. However, the
intermediate curves for the biaxial-30 deg and 37 deg are rela-
tively close, which is confirmed by the equivalence of their re-
spective Fav, 19.2 kN and 19.4 kN. In fact, this result can be
interpreted by a competition phenomenon between the change of
the deformation mode and the change in the material strength via
the loading path complexity. The traditional uniaxial crushing of
reference always presents the weakest energy absorbed.

The biaxial buckling of the aluminum structures activates si-
multaneously two contradictory phenomena: a deformation mode
change and a variation in the material strength properties. Indeed,
the load–deflection curves of the aluminum specimens are re-
corded in Fig. 10�a� showing a comparison between integral
biaxial-30 deg and 45 deg and 0 deg. The effect of the torsional
component on the peak collapse loads �Fmax� is not evident. One
can note, however, a light advantage is observed for the biaxial-
45 deg, i.e., Fav are 10.9 kN, 12 kN, and 12.5 kN for biaxial-
0 deg, 30 deg, and 45 deg loadings, respectively. This means that
the work hardening is moderately changed under biaxial quasi-
static loading. For the energy absorbed, Fig. 10�b� illustrates the
same form as in previous figures. In fact, for an axial deflection of
60 mm, the energy absorbed values are: 0.61, 0.68 kJ, and 0.7 kJ
for biaxial-0 deg, 30 deg, and 45 deg, respectively, giving corre-
sponding enhancements of 11% and 15% in favor of biaxial-
30 deg and 45 deg. However, a radical change in the strength
properties of this material is obviously recorded under dynamic
loading conditions �14�. This demonstrates the real advantage
functions of the ACTP �more than 150% increase in the energy
absorbed in favor of biaxial-45 deg�.

The behavior of the mild steel structures is also presented via
the load–deflection curves �Fig. 11�a��. They have approximately

atypical evolutions concerning the peak collapse loads under the
different biaxial integral loading paths of 0 deg, 30 deg, and
45 deg. Indeed, the initial plasticity peak is rather replaced by a
yield plateau �totally related to this well-known material behav-
ior�. This evolution translates a certain sensitivity related to “the
elastic limit” of this material with respect to the torsion rate of
change. Compared to copper, the Fav of mild steel evolves slightly
with respect to the applied loading complexity, as pointed out in
Fig. 11�a�. Figure 11�b�, illustrating the energy absorbed, reveals
that the absorbed energies under the three loading paths are prac-
tically the same.

It is intriguing to note the parameters � and � and their inter-
action play a primordial role in the deformation mode for a given
structure. As mentioned above, the plastic flow is also conditioned
by the coincidence of the applied load axis with that of the struc-
ture. However, under biaxial loading, the torsional component
provokes after a certain axial deflection, a violation of this coaxi-
ality. The experimental results confirmed that the two parameters,
� and �, control principally the deformation type. Progressively, a
kind of competition phenomenon between the geometrical param-
eters �� and �� and the torsional component effect takes place to
determine the deformation mode. Obviously, the tangential distur-
bance becomes progressively more significant with collapse pro-
gression. This means that the higher the inclination angle, the
higher the tangential disturbance. This demonstrates that the
biaxial-45 deg is the most severe case. Consequently, the biaxial-
45 deg loading often gives the DM �or DXM�, as recorded in the
aluminum structures �Fig. 4�, whereas, with the biaxial-30 deg
situation, it is rather the XM. In spite of this difference, the
biaxial-45 deg case shows an energy absorption capacity more

Fig. 10 Comparison of the „a… load and „b… energy absorbed
evolutions during crushing process: under biaxial loadings
„0 deg, 30 deg, and 45 deg… for the aluminum tubes

Fig. 11 Plots of the „a… load and „b… energy absorbed evolu-
tions during crushing process: under biaxial loadings „0 deg,
30 deg, and 45 deg… for the mild steel tubes
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important than the biaxial-30 deg. This is certainly due to the
strong competition between the two phenomena. It resides be-
tween the reduction in the energy absorption capacity, induced by
the emergence and often the predominance of DM, and the en-
hancement in the material strength due to the biaxial-45 deg load-
ing complexity, as it is clearly shown in Tables 2 and 3.

Let us now examine deeply the effect of the torsional compo-
nent and its complexity on the crushing load evolution for each
fold during collapse process. Extracted from the data in Fig. 9,
Fig. 12 demonstrates clearly that the mean value of each fold is
noticeably affected by the torsional component, i.e., the higher
mean value is recorded for the higher level of loading complexity.
For moderate loading complexity �biaxial-30 deg and 37 deg�, the
effect of the deformation mode becomes, in general more impor-
tant than the torsional component, practically at the end of col-
lapse; and a contrary result is found in the biaxial-45 deg case,
where loading complexity is the most severe.

As far as the variation of the energy absorbed per unit weight is
concerned, it is defined for the three loading paths �biaxial-0 deg,
30 deg, and 45 deg� for the copper and aluminum tubes using two
selected axial deflections of 30 nm and 60 mm. As shown previ-
ously, the biaxial-45 deg loading has the best energy absorption
capacity. It is significant to note that the choice of these two axial
deflections is not arbitrary. In fact, since the AM absorbs more
energy that the DM, it is easily demonstrated through Table 4 that
for �=30 mm, this energy is always more important compared to
�=60 mm for the two metals. This is due to the fact that after the
first chosen axial deflection, a change in deformation mode �from
AM or AXM to DM or DXM� generally takes place, therefore
giving a decrease in the energy absorbed for the two metals �Table
4�.

6 Closure
Based on the importance of the geometrical parameters of tu-

bular structures �� and ��, recently studied �12� in controlling the
energy absorbed via the deformation mode, the results show that
the maximum gain of energy does not exceed 21% with respect to
the classical uniaxial crushing case.

In order to further increase the energy absorption for tubular
structures crushed axially, an original idea is thus explored based
on the material strength modification concept during deformation.
In fact, such an idea consists, a priori, via the loading path com-
plexity, to induce local physical phenomena responsible for the
change in strength properties �enhancement in the work harden-
ing�, consequently giving more energy absorbed. This step has led
to the development of a new patented mechanical assembly, the
ACTP. It generates, through a uniaxial external compression, a
biaxial combined compression–torsion loading within the loaded
structure. The effects of this induced torsional component and its

rate on the absorbed energy are therefore carried out using three
inclination angles �30 deg, 37 deg, and 45 deg�. In the case of a
biaxial situation, two loading situations are studied: the partial
and integral biaxial loadings. The principal conclusions are as
follows:

1. In the biaxial loading, the influence of the rate of change of
the torsional component on the plastic flow and conse-
quently on energy absorbed, can be translated by a maxi-
mum increase of 35% for the copper tubes compared to the
uniaxial free-ends case;

2. In biaxial buckling, three principal parameters ��, and �, and
the torsional component� obviously control the plastic flow,
for a given axial loading rate and material. This therefore
leads to the fact that the loaded structure undergoes an ex-
tremely complex loading path of three different strains
�compressive, bending, and shear� taking place simulta-
neously;

3. The change in mechanical behavior of the deformed material
is provoked by local mechanism modifications;

4. Contrary to the mild steel tubular structures, the copper and
aluminum specimens are obviously affected by the loading
path complexity; and

5. The inexistence of a significant influence of the partial biax-
ial loading in comparison to the integral biaxial from the
energy absorbed viewpoint.

Hence, it is generally recognized now that under biaxial load-
ing, the higher the inclination angle, the greater the loading com-
plexity, the higher the rate of change of torsional component, the
greater consequently, are the mean collapse load and the corre-
sponding absorbed energy, i.e., the biaxial-45 deg is considered as
the most significant case giving the highest Fav as well as the
energy absorbed.
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Application of a Dynamic
Constitutive Law to Multilayer
Metallic Sandwich Panels Subject
to Impulsive Loads
The present paper describes an investigation that implements and assesses a dynamic
continuum constitutive law for all-metallic sandwich panels. It also demonstrates its
application to multilayer panels subject to water blast. Finite element calculations of unit
cells are used to calibrate the model, especially the hardening curves at different strain
rates. Once calibrated, the law is assessed by comparison with two sets of experiments.
The dynamic response of panels impacted by Al foam projectiles at impulses comparable
to those expected in water blast. The response of a multilayer core to an impulse caused
by an explosion occurring in a cylindrical water column. The comparisons reveal that the
overall deformation, average core strain, peak transmitted pressure, and velocities of the
front and back faces are adequately predicted, inclusive of fluid/structure interactions.
The inherent limitations of the approach are the underprediction of the plastic strains in
the faces and incomplete assessment of stress oscillations beyond the peak. The former
deficiency would pertain for any continuum representation for the core and would lead to
problems in the prediction of face tearing. The latter may adversely affect the predictions
of the impulse. �DOI: 10.1115/1.2424471�

1 Introduction
Metallic sandwich structures subject to air and water blast ex-

hibit several response mechanisms, characterized by differing
trends in displacement and plastic strain �1–3�. For example, in
water blast, because of fluid/structure interaction �FSI� effects,
there are four possible responses: soft, strong, slap, and zero back
face deflection �2,3�. When amenable to design in accordance with
the “soft” mechanism, the panels exhibit the best performance,
judged using metrics based on: center deflections, tearing suscep-
tibility of the faces and the reaction forces at the supports �1–3�.
However, a transition to slapping �Fig. 1� would not only elimi-
nate the benefits, but actually degrade the response. Accordingly,
the pursuit of preferred core topologies must be conducted with
these transitions clearly understood. The core options include
single and multilayer configurations. Multilayers have the poten-
tial advantage that successive regions of the core can have prop-
erties tailored to satisfy differing requirements imposed by the
dynamics. An example of a multilayer pyramidal core panel is
depicted in Fig. 2. To establish the requisite understanding, mea-
surements conducted in a test system that includes FSI effects are
needed, in combination with simulations. Relevant measurements
include those conducted in the Dynocrusher facility �4�. To con-
duct simulations, it is not realistic to fully mesh all of the core
members �Fig. 2�. Instead, each layer of the core must be homog-
enized and an adequate constitutive law established. More gener-
ally, homogenization is also needed for large-scale �ship-level�
simulations, even with unilayer cores.

With this background, the first objective of the present assess-
ment is to choose a continuum constitutive law for the individual
layers of the core, implement within ABAQUS Explicit �5� and
demonstrate its application. The second objective is to examine
the capability of the code and establish its limitations by compar-
ing results calculated using this representation with two sets of

existing experimental measurements �4,6� and with full three-
dimensional �3D� simulations �1�. One set of experiments in-
volves the dynamic response of panels impacted by Al foam pro-
jectiles at impulses comparable to those expected in water blast
�6� �Fig. 3�. These experiments incorporate the dynamic responses
of the core, but do not address FSI effects. The second set of
experiments examines the response of a multilayer core to an
impulse imparted by an explosion occurring in a cylindrical water
column �4� �Fig. 4�. This measurement system includes the con-
tribution from the fluid/structure interaction. The final part of the
investigation involves the application of the code to explore the
potential benefits of multilayer designs subject to water blast.

2 Constitutive Law

2.1 Background. Several continuum approaches have been
developed to characterize core structures �7–12�. One has been
developed for isotropic cores, applicable to metal foams �7�, but
not to truss or prismatic cores. Another is anisotropic �8�, but
limited to rate independent materials. It invokes a conical yield
surface in shear/normal stress space, along with a nonassociated
flow rule. Two approaches have been devised for rate-dependent,
anisotropic cores �9,10�. Both incorporate strain and strain-rate
hardening as well as strain softening. One uses a quasi-continuum
approach �9�, bypassing the introduction of a continuum constitu-
tive law. It has the unfavorable feature that face/core interactions
are ignored. Another invokes a constitutive law representative of
the elastic–plastic response of orthotropic compressible materials
�12� with strain-rate dependence �10,11�. The latter has been
implemented in ABAQUS/Explicit through a user material sub-
routine applicable to all core topologies �10,11�. This implemen-
tation provides a level of convenience more suitable to the objec-
tives of this investigation.

In the model, an ellipsoidal yield surface is invoked that gen-
eralizes Hill’s surface for orthotropic plastically incompressible
materials �13�. The ellipticity of the surface is allowed to change
to account for differential hardening or softening upon stressing in
different directions at different strain rates. Associated plastic flow
assures that the plastic strain-rates are normal to the yield surface.
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The general form of the equations allows for strains in all orien-
tations �11�. But, they can be simplified when it is reasonable to
assume that the cores undergo relatively little transverse plastic
strain upon uniaxial stressing. Then, the plastic strain-rate ratios
can be equated to zero: whereupon, the ellipsoidal yield surface
can be written in the form �10�

f � �eff − �0 = 0 �1a�

where the effective stress �eff is defined by
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�2

+ ��23

�̂23
�2

= �
i
��i

�̂i
�2

�1b�

The quantity �0 is a fixed reference stress that can be chosen
arbitrarily; it is simply a scaling factor. Six hardening functions �̂i
are the basic inputs to the model. When �i is the only non-zero

component, �̂i��i
P , �̇i

P� denotes the hardening �or softening� func-
tion, specifying the dependence of �i on the associated plastic
strain component, �i

P. Independent hardening is used as the sim-
plest option. That is, under multiaxial stressing, each of the six
hardening functions, �̂i, is affected only by the plastic strain com-
ponent, �i

P, and its rate. Details can be found elsewhere �10,11�.
The method to be used is based on that previously demonstrated

for quasi-static situations �12,14,15�. In a first step, the input
stress/strain curves for the core members are obtained using unit
cell calculations, conducted in the important straining orienta-
tions. For implementation purposes, some simplifications are re-
quired, requiring judgments about the features to be retained and
those to be discarded. The second step is to implement the con-
stitutive law and reproduce the unit cell calculations to assure that
the simplifications do not give rise to significant discrepancies.
The third �and most important� step is to duplicate experiments on
heterogeneously loaded sandwich panels containing these cores.
Various truss, honeycomb and prismatic core topologies have
been addressed �12,14,15�. The comparisons have revealed that
most aspects of the load/deflection response are adequately dupli-
cated. Discrepancies arise when multiple buckling modes with
strong imperfection sensitivity dominate the behavior �14�. Note
that, to establish consistency, realistic manufacturing imperfec-
tions needed to be incorporated into the unit cell calculations.

2.2 Dynamic Calibration. The objective is to find a proce-
dure for determining the dynamic stress/strain curves for the core
members in a manner that excludes the inertia �10�. Namely, since
ABAQUS Explicit already includes the inertia of each element
�5�, the input stress/strain curves must include the material strain-
rate sensitivity and buckling stabilization, but exclude the inertia.
When the members yield before elastic buckling, as in the present
circumstance, the following procedure is adopted. Unit cells �Fig.
5� are subject to a velocity profile, ��H�, on the top face corre-
sponding to a constant effective strain rate in the core, �̇eff
�� /H, where � is the imposed velocity and H the current core
height. The stress induced on the back face, which has no inertial
component, is calculated. While this response does not reproduce
the dynamic stress/strain behavior of the core member, the rapid
drop in the transmitted stress �10� �see Fig. 6� does give the time
at which the core starts to buckle plastically, and the correspond-
ing strain, �pb. Once this strain has been determined, the input
stress/strain response is ascertained in the following manner �Fig.
7�. The members are considered to have the strain-rate dependent
stress/strain characteristics of the constituent material at strains
below �pb. At this strain, the material begins to soften with slope,
−4ET �the choice is not critical�, where ET is the tangent modulus.
Thereafter, the stress drops to a lower plateau level, �pl, dictated
by the stress for dynamic crushing of the prebuckled core
members.

Calibration curves have been obtained by introducing initial
imperfections with the shape of the first buckling mode �Fig. 5�.
Prior assessments �14� have indicated that experimental measure-
ments can be duplicated by allowing the imperfections to have
amplitude, �=0.01 �based on the member length�. Most calcula-
tions have been performed using �=0.01. But to explain some
effects observed experimentally in the Dynocrusher tests �4�, a
few calculations are performed using �=0.02. Typical results are
plotted in Fig. 6 using the true strain as the abscissa. A comparable
set of calibration curves has been obtained for square honey-
combs, similar to those presented elsewhere �10�, but specialized
to the core dimensions used in projectile impact experiments �6�.
The calculations reveal the following features.

Initial yield �position a in Fig. 6� occurs at stress

�33 = �Y��̄ �square honeycomb� �2a�

Fig. 1 A mechanism map indicating three possible responses
of sandwich panels subject to impulsive loads. A fourth possi-
bility, zero back face deflection, is small and not shown. The
coordinates Ĩ, H̃, and �̃ are the normalized impulse, core height,
and strength, respectively †2,3‡. They are defined as, Ĩ
= „I /M…

	� /�Y, H̃-H /L, and �̃=�YD
c / �̄�Y, where M is the mass per

unit area of the sandwich panel, L its half span, � the density of
the solid material, �Y its yield strength, and �̄ the relative den-
sity of the core. The best response to water blast is found in the
soft domain close to the transition to slapping.

Fig. 2 Images of the seven-layer truss panel taken before and
after testing. Also shown is the numerical model with homog-
enized cores before and after testing.

Journal of Applied Mechanics JULY 2007, Vol. 74 / 637

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�33 = 0.5�Y��̄ �pyramidal truss� �2b�

where �Y� is the yield strength of the constituent material at the
imposed strain rate and �̄ is the relative density. The members
begin to buckle soon after yielding �position b in Fig. 6�, but still
strain harden. The hardening rate is

ET
core 
 �̄ET �square honeycomb� �3a�

ET
truss 
 0.25�̄ET �pyramidal truss� �3b�

The strain hardening continues up to a strain �pb �location d in
Fig. 6�, which varies with strain rate as �Fig. 7�c��

�pb 
 10�̇effHc/cel �square honeycomb and pyramidal truss�
�4�

where Hc is the core thickness and cel the elastic wave speed in
the core member. For the pyramidal truss, softening beyond �pb is
succeeded by a minimum and a second peak �position e→ f in
Fig. 6�, which occurs when the top face contacts the buckled core
members. At strains beyond �pb the stress oscillates about an av-
erage, �pl, given by

�pl/�Y�̄ 
 0.035	�̇eff/�̇0 �5�

with �̇0=1/s. For the square honeycomb, it has been assumed that
�pl /�Y�̄
1. At strain �D, densification commences.

2.3 Input Curves. To perform meaningful calculations, dy-
namic stress/strain curves are needed that encapsulate these fea-
tures �a→d� in the most straightforward manner. The curves cho-
sen for this purpose have the features plotted in Fig. 7. Before
proceeding, the consequences of the simplification should be as-
sessed. For this purpose, the unit cell calculations are duplicated
by using the input curves. Some typical results are presented in
Fig. 8. The results reveal that the homogenized model is stable
and reproduces most of the important stress/strain features. How-
ever, for the pyramidal truss, it does not capture the oscillations
associated with contact between the top face and the core. It re-
mains to establish whether exclusion of this aspect of the core
crushing is significant.

2.4 Multilayer Cores. An alternative procedure is preferred
for multilayer structures with thin interlayer sheets in which inter-
actions between layers strongly effects the response. To demon-
strate this approach, a multilayer unit cell has been constructed

Fig. 3 „a… Images of the stainless steel sandwich panels with square
honeycomb cores after impact by foam projectiles performed at various
values of the nominal impulse †6‡. „b… The corresponding simulations
conducted using the dynamic constitutive law for the core. „c… The de-
formation of the core near the center of the panel shown in „a…, impacted
at the highest impulse. A comparison is made between the measured
shape and that obtained using the dynamic continuum law using mesh
scheme „iii….
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�Fig. 9�, comprising a one-unit column of the seven-layer truss
core. Symmetry boundary conditions are imposed, and �=0.01
imperfections introduced into every truss member. Typical results
plotted in Fig. 9 indicate that, in this case, the interactions be-
tween layers does not change either the deformation mechanism
or the buckling mode, so that the unilayer calibration may still be
used. By using the same imperfections in all layers, it will be
shown that one of the experimental observations in the
Dynocrusher test �4� �Fig. 3�c�� cannot be duplicated: namely, that
the lowest layer exhibits more extensive crushing than the adja-
cent layers. To address this discrepancy, some calculations are

performed by incorporating larger imperfections �magnitude, �
=0.02� in those layers adjoined to each of the faces.

2.5 Meshing. Three meshing schemes have been explored
�10,11,16�, differentiated by the number of elements through the
thickness of the core: �i� multiple elements; �ii� a single element;
and �iii� a thin element next to the outer face plus an elongated
element elsewhere. Scheme �i� has the disadvantage that it is not
computationally efficient for large structures. Scheme �ii� is most
efficient and computationally stable with complex hardening
curves �11�. In this scheme, a half of the core mass is added to

Fig. 4 „a… A schematic of the Dynocrusher test arrangement †4‡. „b… The axisymmetric con-
tinuum finite element model built up for the test. Also shown are representative meshes.
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each of the two faces, causing problems when the top face mass
plays a key role in the performance. In order to diminish the
consequences of this problem, while maintaining computing effi-
ciency, scheme �iii� was devised. Preliminary assessments have

indicated satisfactory responses for impulsive loadings �16�. The
present investigation provides additional insight into the utility of
this scheme.

3 Comparisons With Experiments

3.1 Foam Projectile Impacts on Panels With Square Hon-
eycomb Cores. Tests performed on panels with square honey-
comb cores, impacted by foam projectiles, are used as one assess-
ment of the dynamic model �6�. Images of the impact sequence
�Figs. 3�a� and 3�b�� provide a synopsis of the test and its out-
comes, expressed as the center displacement and the core crush
strain, as functions of the incident impulse �Fig. 10�. The results
of the experiments, as well as simulations with fully meshed
cores, are included. The simulations are repeated using the ho-
mogenized core model with the curves from Fig. 7 used to char-
acterize the compressive behavior. The shear response is repre-
sented by the quasi-static shear stress/strain curve �15�. The
dynamic properties of the foam projectile are described elsewhere
�17�. It is apparent �Fig. 3 and 10� that the predictions of the

Fig. 5 „a… The unit cell for the pyramidal truss core with the
relative density, �̄=0.04, including the top and bottom faces to
capture the truss/face contact. „b… The first buckling mode
used to incorporate imperfections.

Fig. 6 A representative dynamic stress/strain plot for the truss
core and the associated deformations at six different times af-
ter imposing the velocity on the front face „effective strain rate,
�̇eff=1000/s…. The temporal variations of stress are shown for
both the back and front faces. Note that, at location e, the front
face contacts the core, causing a stress elevation.

Fig. 7 „a… The dynamic stress/strain curves used to character-
ize truss cores. The curves are for core thickness, Hc=10 cm
and relative density, �̄=0.04. „b… The dynamic stress/strain
curves used to characterize square honeycomb cores. The
curves are for core thickness, Hc=8.3 mm and relative density,
�̄=0.04. „c… Relationship between the strain at which the core
members begin to buckle and the effective strain rate, ascer-
tained from „a…,„b….
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center displacement, the overall panel deformations, and the core
crushing strain reproduce the experimental measurements as well
as the 3D simulations with reasonable fidelity. However, the de-
formations of a central cross section induced in a high impulse

simulation �Fig. 3�c�� reveal two of the limitations of the homog-
enization approach. �i� The buckling experienced by the actual
core members cannot be reproduced. Instead, the core deforma-
tion is replaced by a crush domain with crush front partially
through the core, extending from the top face. �ii� The face bend-
ing is smooth and monotonic, excluding the local bulging where
the core members connect to the face. The largest plastic strains
in the faces are thus underestimated, with implications for the
prediction of face tearing. In summary, the constitutive law ap-
proach has the attribute that the overall deformations and the av-
erage strains are predictable. But, the concentrated local strains
where core and face members connect are underestimated, as with
any continuum representation of the core. The likely consequence
will be poor prediction of local face tearing at the connections
with the core members.

3.2 Dynocrusher Tests. An underwater explosive test method
�Fig. 4� has been used to investigate the dynamic crushing of a
seven-layer pyramidal truss system with average relative density,
�̄=0.04 �4,18�. The measurements reveal that the panel diminishes
the pressure from an incident level, p0=260 MPa to p
10 MPa,
accompanied by a time extension from 0.2→2 ms. A sectioned
side view �Fig. 2� indicates that the top three layers and the bot-
tom layer have almost fully densified, while the three other layers
have partially crushed �by plastic buckling of the truss members�.
The thickness has decreased from 82 mm to 40 mm correspond-
ing to a compressive plastic strain, �crush=0.51. The test has been
simulated using an axisymmetric continuum model �Fig. 4�b��. A
spring and a dashpot have been introduced beneath the column to
address the elasticity and energy absorption of the base, with co-
efficients calibrated by a reference test using a solid aluminum
cylinder �4,18�.

Initially, the attributes of the constitutive law have been as-
sessed by placing the panel on a rigid base and computing the
back-face stress and impulse as a function of time. For this situ-
ation, comparative results can be obtained by using the multilayer
unit cell model. The comparison indicates that, despite some dif-
ferences in detail, the stresses and impulse levels are captured
quite faithfully by the continuum model �Figs. 11�a� and 11�b�,
respectively�. The features missed are the oscillations in stress
caused by the plastic buckling and contact events, evident in Fig.

Fig. 8 Two examples of stress/strain variations on the back
face comparing 3D results with the predictions obtained using
the dynamic stress/strain curves from Fig. 7„a… in conjunction
with the dynamic constitutive law.

Fig. 9 Crushing sequences for the 3D one-unit column of the
seven-layer core and the associated stresses induced on the
back face. The solid curve is for a calculation with 1% imper-
fections in all layers. The corresponding deformation patterns
are shown in the sequence a\d. The dotted curve is for the
case where the two layers adjoined to the faces have 2% imper-
fections, with 1% imperfections elsewhere. Deformation pat-
terns at two strain levels, x and y, are also shown. Note that,
now, the bottom layer starts to crush before the adjacent layers
and that there is a large stress pulse „at y… when contact occurs
between the core and the face in this layer.

Fig. 10 Comparisons between measurements, full 3D simula-
tions, and simulations conducted using the continuum law with
two different mesh schemes, all corresponding to the tests
summarized in Fig. 3: „a… center point displacements; and „b…
core crushing strains.
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9. The most significant difference is in the amplitude and timing
of the stress peak toward the conclusion of crushing, at time f in
Fig. 9. This peak occurs because of contact between the core
members in the lowest layer and the back face. This deficiency is
believed to be the source of the difference between measurements
and calculations discussed below.

Because of the discrepancy with the observations �Fig. 3�c��,
the finding that the layer next to the base does not crush before the
adjacent layers has motivated further calculations. Namely, larger
imperfections ��=0.02� are used in the layers adjoined to the
faces. The results are plotted in Fig. 9. Now, the lowest layer does,
indeed, crush earlier than some of the adjacent layers. Moreover,
this event results in additional stress pulse, which should influence
the transmitted pressure. The conclusion is that imperfections can
change the crushing sequence and hence, the transmitted pressure
and final deformation patterns.

When the support column is inserted, the stresses at the strain
gauges calculated using the continuum model are different �Fig.
11�c�� because of stress wave effects occurring in the columns. In
particular, the stress calculated at the first peak is higher than that
for a rigid base �10 MPa rather than 5 MPa� because the column
acts as a waveguide. The continuum simulations reproduce this
initial pressure pulse. The core crushing strain, �crush=0.5, is also
closely reproduced �Fig. 2�. However, the following discrepancies
are apparent. �i� The time required to fully compact the core,
characterized by a drop in pressure to a background level, is pre-

dicted to be, tcrush=1.7 ms, while the measured time is somewhat
longer, tcrush=2.2 ms. �ii� There is a corresponding underpredic-
tion of the total transmitted impulse IT
6.5 kPa s instead of, IT

8 kPa s. �iii� The third pressure peak found in the experiments,
occurring at time, t=1.2 ms, is not duplicated. This discrepancy
may be present because the imperfection effect described above
has not been included in the model.

In summary, the constitutive law approach has the attribute that
the overall deformations and peak pressure levels are predicted
quite closely. However, certain details are not reproduced, such as
the pressure oscillations beyond the initial peak. It remains to
ascertain whether the discrepancies present problems when using
the continuum approach to predict responses to water blast.

4 Comparisons With Water Blast Simulations
The constitutive law has been used to predict the response to

water blast of panels with square honeycomb cores for compari-
son with full 3D simulations described elsewhere �1�. The results
provide another assessment of the constitutive law when fluid/
structure interactions are involved. To be consistent with these
studies, a longitudinal unit cell has been chosen and the panel
supported only at the dry face �1�. The impulse is planar with peak
pressure, p0=100 MPa and duration, t0=0.1 ms. The half span is,
L=1 m, with ratio of core thickness to span, Hc /L=0.2. Results
for a panel having a core with relative density, �̄=0.04, are pre-
sented in Fig. 12 and 13, where they are compared with the dis-

Fig. 11 Comparisons between fully meshed 3D calculations
and continuum calculations for a Dynocrusher test with the
bottom face rigidly fixed: „a… transmitted pressure and „b…
transmitted impulse. Note the close correspondence for both
metrics. „c… The pressures transmitted to the gauge columns: a
comparison between measurements and values calculated us-
ing the constitutive law.

Fig. 12 Comparisons between full 3D calculations and simu-
lations conducted using the continuum model conducted for
panels with square honeycomb cores subjected to water blast
†1‡: „a… maximum back face deflection; „b… average core strain;
and „c… back face deflection.
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crete simulations. Note that the velocity characteristics are consis-
tent with strong core behavior �1�: that is, the faces attain a
common velocity and decelerate to rest along a common trajec-
tory. The consistency in the deflections and crushing strains �Fig.
12�, as well as the velocities of the faces �Fig. 13�, imply that the
continuum model captures fluid/structure interactions and pro-
vides quite accurate predictions of these metrics. However, defi-
ciencies again arise in the prediction of the plastic strains in the
faces �not shown�.

5 Multilayer Panels Subject to Water Blast
The constitutive law has been used to ascertain the potential for

using panels with multilayer cores to improve blast resistance.
Results for a four-layer pyramidal core design are presented in
Figs. 14 and 15, and Table 1. The four layers have the same
relative density, with the ratio of the back to front face thickness,
�=6. Two panels �one with �̄=0.5% at Hc /L=0.3 and the other
with �̄=4% at Hc /L=0.2� exhibit typical soft core and strong core
mechanisms, respectively �1�. The distinctions are apparent in the

deformed shapes �Fig. 14� and velocity characteristics �Fig. 15�
�1�. The center point displacement and loads transmitted to the
supports are compared with the best available results found for
designs with I- and corrugated cores �1� �Table 1�. Plastic strains
in the faces have also been determined �Table 1�, but because of
the limitations of this approach, the results are de-emphasized. It
is apparent that the multilayer with �̄=0.5% enables smaller dis-
placements than those found for the I- and corrugated cores but

Fig. 13 Velocities of the wet and dry faces for the simulations
presented in Fig. 12: „a… Simulations conducted using the con-
tinuum model; „b… full 3D simulations.

Fig. 14 The deformed shapes of two typical four-layer pyrami-
dal core panels under water blast: „a… a soft core with �̄=0.5%;
and „b… a strong core with �̄=4%.

Fig. 15 The velocities of the front and back faces for the two
panels from Fig. 14: „a… a soft core with �̄=0.5% and „b… a
strong core with �̄=4%.

Table 1 Comparisons of the best available results between py-
ramidal, corrugated, and I cores with Hc /L=0.3

Pyramidal
�̄=0.5%

�=6

I
�̄=1.3%

�=3

Corrugated
�̄=2%
�=5.5

Back face deflection,
�b /L

0.090 0.096 0.104

Maximum plastic strain
in the front face, �p

�0.008� 0.035 0.126

Peak reaction force,
Preact �kN/m�

1300 1100 850
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the transmitted loads are larger. The preferred choice of core thus
depends on the metric having greater relevance. Continued explo-
ration of multilayer cores might reveal designs that benefit both
metrics.

6 Concluding Comments
An investigation has been conducted that implements and as-

sesses a dynamic continuum constitutive law for all-metallic sand-
wich panels. Its application to multilayer panels subject to water
blast is demonstrated. It is shown that unit cell calculations can be
used to calibrate the continuum model. Comparisons between
simulations and experiments have been made for two cases. One
involves the dynamic response of honeycomb core panels im-
pacted by Al foam projectiles at impulses comparable to those
expected in water blast. The second concerns the response of a
multilayer truss core to an impulse caused by an explosion occur-
ring in a cylindrical water column. The comparisons reveal that
the overall deformation, average core strain, peak transmitted
pressure, and velocities of the front and back faces are adequately
predicted, inclusive of fluid/structure interactions. The inherent
limitations of the approach are the underprediction of the plastic
strains in the faces, as with any continuum representation of the
core, and incomplete assessment of stress oscillations beyond the
peak. The former leads to problems in the prediction of local face
tearing.

New results have been presented for multilayer designs with
pyramidal truss cores subject to water blast. When compared with
results for other designs, the performance of a multilayer with a
low-density core is shown to enable smaller displacements.
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Effect of Boundary Conditions on
Nonlinear Vibrations of Circular
Cylindrical Panels
Geometrically nonlinear vibrations of circular cylindrical panels with different boundary
conditions and subjected to harmonic excitation are numerically investigated. The Don-
nell’s nonlinear strain–displacement relationships are used to describe geometric nonlin-
earity; in-plane inertia is taken into account. Different boundary conditions are studied
and the results are compared; for all of them zero normal displacements at the edges are
assumed. In particular, three models are considered in order to investigate the effect of
different boundary conditions: Model A for free in-plane displacement orthogonal to the
edges, elastic distributed springs tangential to the edges and free rotation; Model B for
classical simply supported edges; and Model C for fixed edges and distributed rotational
springs at the edges. Clamped edges are obtained with Model C for the very high value
of the stiffness of rotational springs. The nonlinear equations of motion are obtained by
the Lagrange multimode approach, and are studied by using the code AUTO based on the
pseudo-arclength continuation method. Convergence of the solution with the number of
generalized coordinates is numerically verified. Complex nonlinear dynamics is also
investigated by using bifurcation diagrams from direct time integration and calculation of
the Lyapunov exponents and the Lyapunov dimension. Interesting phenomena such as (i)
subharmonic response; (ii) period doubling bifurcations; (iii) chaotic behavior; and (iv)
hyper-chaos with four positive Lyapunov exponents have been observed.
�DOI: 10.1115/1.2424474�

1 Introduction
The first studies on geometrically nonlinear vibrations of clas-

sical simply supported, circular cylindrical shallow shells are due
to Reissner �1�, Grigolyuk �2�, and Cummings �3�. They used the
Donnell’s nonlinear shallow-shell theory, i.e., neglecting in-plane
inertia, and single-mode approximation of the transverse deflec-
tion in order to reduce the solution to a single degree of freedom.

Leissa and Kadi �4� studied linear and nonlinear free vibrations
of doubly curved shallow panels, classical simply supported at the
four edges. Donnell’s nonlinear shallow-shell theory was used in a
slightly modified version to take into account the meridional cur-
vature. A single mode expansion of the transverse displacement
was used.

Extensive literature review on nonlinear vibration of circular
cylindrical shells and panels is given by Amabili and Païdoussis
�5� and therefore it is not reported here.

In particular, not many studies deal with nonlinear vibrations of
circular cylindrical panels with boundary conditions different
from classical simply supported edges. In particular, Chia �6�
studied laminated shallow cylindrical panels with mixed boundary
conditions resting on elastic foundation. Zero transverse displace-
ment is assumed at the edges where rotational springs are intro-
duced. In-plane boundary conditions are zero tangential force and
given force orthogonal to the edges. A single mode analysis is
carried out by using the Donnell’s nonlinear shallow-shell theory.
Fu and Chia �7� extended this study by considering a multimode
solution.

Yamaguchi and Nagai �8� studied vibrations of a shallow cylin-
drical panel with a rectangular boundary, with zero transverse de-
flection and free rotation at the boundaries, and with in-plane
elastic constraints orthogonal to the edges and free in-plane tan-
gential to the edges. The panel was excited by an acceleration

having a constant value plus a harmonic component. Donnell’s
nonlinear shallow-shell theory was utilized with the Galerkin pro-
jection along with a multimode expansion of the flexural displace-
ment. In-plane boundary conditions were satisfied on the average.
Initial imperfection was taken into account in the theoretical for-
mulation but not in the calculations. The harmonic balance
method and direct integration were used. The response of the
panel was of softening type over the whole range of possible
stiffness values of the in-plane springs �elastic support�, becoming
hardening for a vibration amplitude on the order of the shell thick-
ness; in-plane constraints reduce the softening nonlinearity, which
turns to hardening for smaller vibration amplitudes. The objective
of the study was to investigate regions of chaotic motion; these
regions were identified by means of Poincaré maps and Lyapunov
exponents. It was found that, when approaching the static insta-
bility point �due to the constant acceleration load�, chaotic shell
behavior may be observed.

Free vibrations of doubly-curved, laminated, clamped shallow
panels, including circular cylindrical panels, were studied by Abe
et al. �9�. Both first-order shear deformation theory and a shell
theory analogous to the Donnell’s theory were used. Results ob-
tained neglecting in-plane and rotary inertia are very close to
those obtained retaining these effects. Two modes were consid-
ered to interact in the nonlinear analysis of the second mode �2,1�
�two circumferential and one longitudinal half-waves�, while a
single mode was used for the first mode �1,1� �one circumferential
and one longitudinal half-wave�.

Amabili �10� studied the large-amplitude, forced vibrations of
mode �1,1� of circular cylindrical panels with rectangular base,
classical simply supported at the four edges, and subjected to
radial harmonic excitation. Two different nonlinear strain–
displacement relationships, from the Donnell’s and the No-
vozhilov’s shell theories, were used to calculate the elastic strain
energy. In-plane inertia and geometric imperfections were taken
into account. The solution was obtained by the Lagrangian ap-
proach. Convergence of the solution was shown and differences
between the Donnell’s and the Novozhilov’s nonlinear shell theo-
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ries were fully negligible. A very satisfactory comparison with the
results obtained by Kobayashi and Leissa �11� was given. Interac-
tion of modes having integer ratio among their natural frequen-
cies, giving rise to internal resonances, are also discussed.

In the present study, for the first time the effect of boundary
conditions on the trend of nonlinearity of circular cylindrical pan-
els is studied. This is of particular interest because results show
that a panel with the same geometry presents a significant soften-
ing type nonlinearity if simply supported or with fixed edges,
while it has a relatively strong, hardening type nonlinearity for
free in-plane edges and for clamped edges. Here geometrically
nonlinear vibrations of circular cylindrical panels with different
boundary conditions and subjected to harmonic excitation are nu-
merically investigated. The Donnell’s nonlinear strain–
displacement relationships are used to describe the geometric non-
linearity but in-plane inertia is taken into account. Different
boundary conditions are studied and results are compared; for all
of them, zero transverse displacements at the edges are assumed.
In particular, three models are considered in order to investigate
different boundary conditions: Model A, recently developed by
Amabili �12�, for free in-plane displacements orthogonal to the
edges, elastic distributed springs tangential to the edges, and free
rotation; Model B for classical simply supported edges, which has
been previously developed and validated by the author �10�; and
Model C for fixed edges and distributed rotational springs at the
edges, especially developed for the present study. Clamped edges
are obtained with Model C for a very high value of the stiffness of
the rotational springs. The nonlinear equations of motion are ob-
tained by the Lagrange multimode approach, and are studied by
using the code AUTO based on the pseudo-arclength continuation
method. The convergence of the solution with the number of gen-
eralized coordinates is numerically verified. Complex nonlinear
dynamics is also investigated by using bifurcation diagrams from
direct time integration and calculation of the Lyapunov exponents
and the Lyapunov dimension. Interesting phenomena such as �i�
subharmonic response; �ii� period doubling bifurcations; �iii� cha-
otic behavior; and �iv� hyper-chaos with four positive Lyapunov
exponents have been observed.

2 Elastic Strain Energy of the Panel
A circular cylindrical panel with the cylindrical coordinate sys-

tem �O ;x ,r ,��, having the origin O at the center of one end of the
panel, is considered, as shown in Fig. 1. The displacements of an
arbitrary point of coordinates �x ,�� on the middle surface of the
panel are denoted by u, �, and w, in the axial, circumferential, and
radial directions, respectively; w is taken positive outward. Initial
imperfections of the circular cylindrical panel associated with zero
initial tension are denoted by radial displacement w0, and positive
outward; only radial initial imperfections are considered.

The Donnell’s strain–displacement relationships for thin shells
are used; they are based on Love’s first approximation assump-
tions. The strain components �x, ��, and �x� at an arbitrary point
of the panel are related to the middle surface strains �x,0, ��,0, and

�x�,0 and to the changes in the curvature and torsion of the middle
surface kx, k�, and kx� by the following three relationships

�x = �x,0 + zkx, �� = ��,0 + zk�, �x� = �x�,0 + zkx� �1�

where z is the distance of the arbitrary point of the panel from the
middle surface. The middle surface strain–displacement relation-
ships and changes in the curvature and torsion for a circular cy-
lindrical panel are �10� �see Ref. �5� for other classical references�
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The elastic strain energy US of a circular cylindrical panel, ne-
glecting �z as stated by Love’s first approximation assumptions, is
given by

US =
1

2�
0

��
0

a�
−h/2

h/2

��x�x + ���� + �x��x��dz dx R�1 + z/R�d�

�3�

where h is the panel thickness; R is the panel middle radius; a is
the panel length; � is the angular dimension of the panel; and the
stresses �x; ��, and �x� are related to the strains for homogeneous
and isotropic material ��z=0, case of plane stress� by

�x =
E

1 − �2 ��x + ����, �� =
E

1 − �2 ��� + ��x�, �x� =
E

2�1 + ��
�x�

�4�

where E is the Young’s modulus and � is Poisson’s ratio. By using
Eqs. �1�, �3�, and �4�, the following expression is obtained

US =
1

2

Eh

1 − �2�
0

��
0

a ��x,0
2 + ��,0

2 + 2��x,0��,0 +
1 − �

2
�x�,0

2 �dxR d�

+
1

2

Eh3

12�1 − �2��
0

��
0

a �kx
2 + k�

2 + 2�kxk� +
1 − �

2
kx�

2 �dxR d�

+ O�h4� �5�

where O�h4� is a higher-order term in h; the first term is the
membrane �also referred to as stretching� energy; and the second
one is the bending energy.

3 Boundary Conditions, Kinetic Energy, and External
Loads

The kinetic energy TS of a circular cylindrical panel, by neglect-
ing rotary inertia, is given by

Fig. 1 Geometry of the panel, coordinate system and symbols
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TS =
1

2
�Sh�

0

��
0

a

�u̇2 + v̇2 + ẇ2�dxR d� �6�

where �S is the mass density of the panel. In Eq. �6� the overdot
denotes a time derivative.

The virtual work W done by the external forces is written as

W =�
0

��
0

a

�qxu + q� v + qrw�dxR d� �7�

where qx, q�, and qr are the distributed forces per unit area acting
in axial, circumferential, and radial directions, respectively. Ini-
tially, only a single harmonic radial force is considered; therefore
qx=q�=0. The external radial distributed load qr applied to the

panel, due to the radial concentrated force f̃ , is given by

qr = f̃	�R� − R�̃�	�x − x̃�cos�
t� �8�

where 
 is the excitation frequency; t is the time; 	 is the Dirac

delta function; f̃ gives the radial force amplitude positive in w

direction; and x̃ and �̃ give the axial and angular positions of the
point of application of the force, respectively. Equation �7� can be
rewritten in the following form

W = f̃ cos�
t��w�x=x̃,�=�̃ �9�

The following boundary conditions are introduced in the
present study:

Model A

Nx = w = w0 = Mx = �2w0/�x2 = 0, Nx,y = − kv, at x = 0,a

�10�

Ny = w = w0 = My = �2w0/�y2 = 0, Ny,x = − ku, at y = 0,b

�11�
Model B

v = w = w0 = Nx = Mx = �2w0/�x2 = 0, at x = 0,a �12�

u = w = w0 = Ny = My = �2w0/�y2 = 0, at y = 0,b �13�
Model C

u = v = w = w0 = 0, Mx =
Eh3

12�1 − �2�
�kx + �ky� = c�w/�x

at x = 0,a �14�

u = v = w = w0 = 0, My =
Eh3

12�1 − �2�
�ky + �kx� = c�w/�y

at y = 0,b �15�

where y=R�; b=R�; k is the distributed in-plane spring stiffness
�N/m2� where springs are distributed along the panel edges in the
edge direction; Mx and My are the bending moments per unit
length on the edges orthogonal to x and y, respectively; Nx and Ny
are the normal forces per unit length; Nx,y is the shear force per

unit length; and c is the stiffness per unit length of the elastic,
distributed rotational springs placed at the four edges, x=0, a and
y=0, b. w is restrained at the four panel edges for all the three
models. Model A: Eqs. �10� and �11� give fully free in-plane for
k=0 and classical simply supported conditions in the limit case
k→� this model has been developed in Ref. �12�. Model B: Eqs.
�12� and �13� give the classical simply supported boundary con-
ditions and the problem has been studied in Ref. �10�. Model C is
developed in the present study and gives fixed edges in-plane with
free rotation for c=0 and a perfectly clamped panel ��w /�x=0
and �w /�y=0� obtained as the limit for c→�. In the case of c,
unlike zero, an additional potential energy stored by the elastic
rotational springs at the panel edges must be added. This potential
energy UR is given by

UR =
1

2�
0

b

c�	� �w

�x
�

x=0

2

+ 	� �w

�x
�

x=a

2�dy

+
1

2�
0

a

c�	� �w

�y
�

y=0

2

+ 	� �w

�y
�

y=b

2�dx �16�

In Eq. �16� a nonuniform stiffness c �function of x or y, simulating
a nonuniform constraint� can be assumed. In order to simulate
clamped edges in numerical calculations, a very high value of the
stiffness c must be assumed. This approach is usually referred to
as the artificial spring method which can be regarded as a variant
of the classical penalty method. The values of the spring stiffness
simulating a clamped panel can be obtained by trials and errors or
by evaluating the edge bending stiffness of the panel. In fact, it
has been found that the natural frequencies of the system converge
asymptotically to those of a clamped panel when c becomes very
large. Only the development of Model C is discussed in the fol-

Table 1 Natural frequency of mode „1, 1… for different bound-
ary conditions

Model Boundary condition
Natural frequency

�Hz�

A k=0 549.3 �19 DOF� 539.4 �50 DOF�
A k=4�109 N/m2 597.0 �19 DOF�
B Simply supported 636.9 �9 DOF�
C c=0 912.0 �39 DOF� 912.0 �79 DOF�
C c=5�104 N 1211.2 �39 DOF� 1168.3 �79 DOF�

Fig. 2 Natural frequency of mode „1,1… of supported panel
computed with model A versus k; 19 DOF

Fig. 3 Natural frequency of mode „1,1… of panel with fixed
edges computed with model C versus c; 39 DOF
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lowing section and the interested reader can find mathematical
details on Models A and B in Refs. �12,10�, respectively.

4 Mode Expansion and Lagrange Equations of Motion
In order to reduce the system to finite dimensions, the middle

surface displacements u, v, and w are expanded by using the fol-
lowing approximate functions, which identically satisfy the geo-
metric boundary conditions in Eqs. �14� and �15�

w�x,y,t� = �
m=1

M1

�
n=1

N1

wm,n�t�sin�mx/a�sin�ny/b� �17�

u�x,y,t� = �
m=1

M2

�
n=1

N2

um,n�t�sin�mx/a�sin�ny/b� �18�

v�x,y,t� = �
m=1

M3

�
n=1

N3

vm,n�t�sin�mx/a�sin�ny/b� �19�

where m and n are the numbers of half-waves in x and y direc-
tions, respectively, and t is the time; um,n�t�, vm,n�t�, and wm,n�t�
are the generalized coordinates that are unknown functions of t.
M# and N# indicate the terms necessary in the expansion of the
displacements, where #=1,2 ,3.

Only out-of-plane initial geometric imperfections of the panel
are assumed; they are associated with zero initial stress. The im-
perfection w0 is expanded in the same form of w, i.e., in a double
Fourier sine series satisfying the boundary conditions �14� and
�15� at the panel edges

w0�x,y� = �
m=1

M̃

�
n=1

Ñ

Am,n sin�mx/a�sin�ny/b� �20�

where Am,n are the modal amplitudes of imperfections; and Ñ and

M̃ are integers indicating the number of terms in the expansion.
The nonconservative damping forces are assumed to be of vis-

cous type and are taken into account by using Rayleigh’s dissipa-
tion function

F =
1

2
cd�

0

a�
0

b

�u̇2 + v̇2 + ẇ2�dx dy �21�

where cd has a different value for each term of the mode expan-
sion. Simple calculations give

F =
1

2
�ab/4�	�

n=1

N1

�
m=1

M1

cm,nẇm,n
2 + �

n=1

N2

�
m=1

M2

cm,nu̇m,n
2

+ �
n=1

N3

�
m=1

M3

cm,nv̇m,n
2 
 �22�

The damping coefficient cm,n is related to the damping ratio by
�m,n=cm,n / �2�m,n
m,n�, where 
m,n is the natural circular fre-
quency of mode �m ,n� and �m,n is the modal mass of this gener-
alized coordinate, given by �m,n=�Sh�ab /4�.

The following notation is introduced for brevity

q = um,n,vm,n,wm,n�T, m = 1, . . . M1 or 2 or 3

and n = 1, . . . N1 or 2 or 3 �23�

The generic element of the time-dependent vector q is referred to
as qj, which is the generalized coordinate; the dimension of q is
N, which is the number of degrees of freedom �DOF� used in the
mode expansion.

The generalized forces Qj are obtained by differentiation of
Rayleigh’s dissipation function and of the virtual work done by
external concentrated harmonic force at the center of the panel

Qj = −
�F

�q̇j

+
�W

�qj
= − �ab/4�cjq̇j + �0 if qj = um,n,vm,n;or wm,n with m or n even

f̃ cos�
t� if qj = wm,n with both m and n odd� �24�

Fig. 4 Nondimensional response of the panel for different
boundary conditions versus non-dimensional excitation fre-
quency; mode „1,1…, f=0.021, �1,1=0.004. „– –… classical simply
supported panel „model B…, 9 DOF; „— - —… model A with k=4
Ã109 N/m2, 19 DOF; „—… model A with k=0 „in-plane free
edges…, 19 DOF. „a… Maximum of generalized coordinate w1,1;
and „b… minimum of w1,1.
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The Lagrange equations of motion are

d

dt
� �TS

�q̇j
� −

�TS

�qj
+

��US + UR�
�qj

= Qj, j = 1, . . . N �25�

where �TS /�qj =0. These second-order equations have very long
expressions containing quadratic and cubic nonlinear terms. In
particular

d

dt
� �TS

�q̇j
� = �Sh�ab/4�q̈j �26�

which shows that no inertial coupling among the Lagrange equa-
tions exists for the panel with the mode expansion used.

The very complicated term giving quadratic and cubic nonlin-
earities can be written in the form

Fig. 5 Nondimensional response of the panel for different boundary con-
ditions versus nondimensional excitation frequency; mode „1,1…, f=0.021,
�1,1=0.004. „– –… classical simply supported panel „model B…, 9 DOF; „— - —…

model C with c=5Ã104 N/rad „practically clamped…, 39 DOF; „—… model C
with c=0 „fixed edges…, 39 DOF. „a… Maximum transverse displacement at
the center of the panel; and „b… minimum transverse displacement at the
center of the panel.
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��US + UR�
�qj

= �
k=1

dofs

qkfk,j + �
i,k=1

dofs

qiqkf i,k,j + �
i,k,l=1

dofs

qiqkqlf i,k,l,j

�27�

where coefficients f have long expressions that also include geo-
metric imperfections.

5 Numerical Techniques
The Lagrange equations have been obtained by using the Math-

ematica computer software �13� in order to perform analytical
surface integrals of trigonometric functions �e.g., integrals in Eq.
�5��. The generic jth Lagrange equation is divided by the mass of
the jth generalized coordinate �associated with q̈j� and then is
transformed in two first-order equations. A nondimensionalization
of variables is also performed for computational convenience: the
frequencies are divided by the natural circular frequency 
m,n of
the mode �m ,n� investigated, and the vibration amplitudes are
divided by the panel thickness h. The resulting 2�N equations
are studied by using: �i� the software AUTO 97 �14� for continu-
ation and bifurcation analysis of nonlinear ordinary differential
equations, and �ii� direct integration of the equations of motion by
using the DIVPAG routine of the Fortran library IMSL. The soft-
ware AUTO 97 is capable of continuation of the solution, bifur-
cation analysis, and branch switching by using pseudo-arclength
continuation and collocation methods; in the present study the
program has been modified in order to handle more variables and
it has been recompiled for the PC. In particular, the panel response
under harmonic excitation has been studied by using an analysis
in two steps: �i� first the excitation frequency has been fixed far
enough from resonance and the magnitude of the excitation has
been used as the bifurcation parameter; the solution has been
started at zero force where the solution is the trivial undisturbed
configuration of the panel and has been continued up to reach the
desired force magnitude; and �ii� when the desired magnitude of
excitation has been reached, the solution has been continued by
using the excitation frequency as the bifurcation parameter.

Direct integration of the equations of motion by using Gear’s
BDF method �routine DIVPAG of the Fortran library IMSL� has
also been performed to check the results and obtain the time be-
havior. Gear’s algorithm has been used due to the relatively high
dimension of the dynamical system. Indeed, when a high-
dimensional phase space is analyzed, the problem can present stiff
characteristics, due to the presence of different time scales in the
response. In simulations with adaptive step size Runge–Kutta
methods, spurious nonstationary and divergent motions can be
obtained. Therefore, Gear’s method, designed for stiff equations,
was used.

The bifurcation diagram of the Poincaré maps was also used in
the case of nonstationary response. It has been constructed by
using the time integration scheme and by varying the force am-
plitude.

The maximum Lyapunov exponent has been computed with the
algorithm described in Refs. �15,16� by simultaneous integration
of the 4�N first-order differential equations �the nonlinear equa-
tions of motion are integrated by using DIVPAG IMSL routine
and the variational linear equations with time-varying coefficients
�16� are integrated by using the adaptive step-size 4th–5th-order
Runge–Kutta method�. The excitation period has been divided
into 10,000 integration steps in order to have accurate evaluation
of the time-varying coefficients. To find a reference trajectory, 6
�106 steps are skipped in order to eliminate the transient and 1
�106 steps are skipped to eliminate the transitory on the varia-
tional equations. Then 1�106 steps are used for evaluation of the
maximum Lyapunov exponent.

The Fortran computer program developed to calculate all the
Lyapunov exponents has been described in Ref. �16�. In particular,
1�107 steps have been used to evaluate the Lyapunov exponents

�ten times larger than for calculation of the maximum Lyapunov
exponent, which has been evaluated for all the bifurcation dia-
gram with high computational cost�.

6 Numerical Results for Harmonic Response
Numerical calculations have been performed for the harmonic

response of a circular cylindrical panel having the following di-
mension and material properties: length between supports L
=0.1 m, radius of curvature R=1 m, thickness h=0.001 m, angu-
lar width between supports �=0.1 rad �i.e., the panel has length
equal to the circumferential width�, Young’s modulus E=206
�109 Pa, mass density �=7800 kg/m3 and Poisson ratio �=0.3.
A panel with the same dimension ratios �R /L=10, h /L=0.01,
R� /L=1, �=0.3� was previously studied by Kobayashi and Leissa
�11� and Amabili �10�. The following generalized coordinates
have been used for Model A, giving a 19 DOF model: w1,1, w1,3,
w3,1, w3,3, u1,0, u1,2, u1,4, u3,0, u3,2, u3,4, v0,1, v2,1, v4,1, v0,3, v2,3,
v4,3, v0,5, v2,5, v4,5; convergence of this model has been shown in
Ref. �12�. The following generalized coordinates have been used
for Model B, giving a 9 DOF model: w1,1, u1,1, u3,1, u1,3, u3,3,
v1,1, v1,3, v3,1, v3,3; convergence of this model has been shown in
Ref. �10�. The following generalized coordinates have been used
for Model C, giving a 39 DOF model: w1,1, w3,1, w5,1, w7,1, w1,3,
w3,3, w5,3, w7,3, w1,5, w3,5, w5,5, w1,7, w3,7, u2,1, u4,1, u6,1, u8,1, u2,3,
u4,3, u6,3, u8,3, u2,5, u4,5, u6,5, u2,7, u4,7, v1,2, v3,2, v5,2, v7,2, v1,4,
v3,4, v5,4, v7,4, v1,6, v3,6, v5,6, v1,8, v3,8. Geometric imperfections
are not considered in the following study.

The natural frequency of mode �m=1,n=1� for different
boundary conditions is given in Table 1. For Model A, which has
a slow convergence of linear frequency, a model with 50 DOF has
also been used for comparison. Model C has slow convergence in
the case of high stiffness of rotational springs �almost clamped
edges�; in this case a model with 79 DOF has been used for
comparison.

The effect of the stiffness k �N/m2� of distributed in-plane
springs parallel to the panel edges on natural frequencies of mode
�1,1� is shown in Fig. 2, obtained with Model A with 19 DOF.
Figure 2 shows that k on the order of 1011 N/m2 is necessary to
simulate the classical simply supported panel.

Fig. 6 Convergence of model C „c=5Ã104 N/rad… for nonlin-
ear forced vibrations of the clamped panel; nondimensional re-
sponse of generalized coordinate w1,1 versus non-dimensional
excitation frequency; fundamental mode „1,1…, f=0.021, �1,1
=0.004. „— - —… 24 DOF; „– –… 27 DOF; „—… 39 DOF.
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The effect of the stiffness c �N/rad� of distributed rotational
springs at panel edges on natural frequencies of mode �1,1� is
shown in Fig. 3, obtained with Model C with 39 DOF. Figure 3
shows that c equal to or larger than 2�104 N/rad is necessary to
simulate the clamped panel.

Forced vibrations of large amplitude are studied by using the
software AUTO 97. The following nondimensional modal excita-
tion on the generalized coordinate w1,1 is introduced and its am-
plitude is immediately related to the harmonic point force excita-

tion f̃ at �x= x̃, y= ỹ�

f =
f̃ sin�x̃/a�sin�ỹ/b�
h2�S
1,1

2 �a/2��b/2�

Harmonic excitation of nondimensional amplitude f =0.021 �cor-

responding to f̃ =6.6 N for the simply supported panel� has been
imposed at the center of the panel in the frequency range around
resonance of the fundamental mode �1, 1�. In all the numerical
simulations a modal damping �1,1=0.004 has been assumed.

In the present study, comparison with previously published re-
sults is not shown because Model B has already been validated in
Ref. �10� by comparison with results by Kobayashi and Leissa
�11� for the same panel studied here. Moreover, Model A has been
satisfactorily compared to experimental results for two different
panels in Ref. �12�. For clamped panels �Model C for c→�� no
results have been found for isotropic shells. A study showing a
comparison with theoretical results obtained by using a com-
pletely different approach based on the R-function method �17� is
under development.

Figure 4 shows the effect of the boundary conditions on the
nonlinear response �generalized coordinate w1,1 only, which is far
from the most significant� of the panel considering Models A and
B. In fact, three different boundary conditions are compared: clas-
sical simply supported �Model B, see Ref. �10�� versus Model A
for k=0 and k=4�109 N/m2. The simply supported panel for
mode �1,1� presents a significant softening nonlinearity while
Model A with free in-plane edges �k=0� presents hardening non-
linearity; the case for k=4�109 N/m2 obviously lies inbetween.

Fig. 7 Response of panel computed with model A for k=4Ã109 N/m2; fundamen-
tal mode „1,1…, f=0.021, �1,1=0.004, 19 DOF. „—… stable periodic response; „– –…
unstable periodic response. „a… Maximum of the generalized coordinate w1,1; „b…
maximum of the generalized coordinate w1,3; „c… maximum of the generalized co-
ordinate w3,1; „d… maximum of the generalized coordinate w3,3; „e… maximum of the
generalized coordinate u1,0; and „f… maximum of the generalized coordinate v0,1.
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Comparison of Figs. 4�a� and 4�b� also show asymmetric behavior
of the oscillation outward �maximum� and inwards �minimum�
with respect to the center of the curvature of the panel. In particu-
lar, this asymmetric behavior is enhanced for the simply supported
panel.

Figure 5 shows the effect of the boundary conditions on the
nonlinear response �in this case, the transverse displacement w at
the center of the panel is shown, due to the significant modal
interaction for Model C� of the panel considering Models B and
C. The panel with fixed in-plane edges and free rotation �Model C,
c=0� initially presents an enhanced softening-type nonlinearity
with respect to the simply supported panel, turning to hardening
type for the larger value of the vibration amplitude. However, the
behavior of the panel with clamped edges �Model C, c=5
�104 N/rad� is completely different and always shows a rela-
tively strong hardening-type nonlinearity. Also for Model C asym-
metric behavior of the oscillation outward and inward is observed.
Response for Model C with c=0 presents a peculiar loop due to
internal resonances and it will be discussed later in this section.

The convergence of the solution for clamped panel �Model C,
c=5�104 N/rad� versus different number of generalized coordi-
nates retained in the expansion is shown in Fig. 6. In particular,
three models are compared: 24, 27, and 39 DOF; the 27 DOF
model has: w1,1, w3,1, w5,1, w1,3, w3,3, w5,3, w1,5, w3,5, w5,5, u2,1,
u4,1, u6,1, u2,3, u4,3, u6,3, u2,5, u4,5, u6,5, v1,2, v3,2, v5,2, v1,4, v3,4,
v5,4, v1,6, v3,6, v5,6. The 24 DOF model has: w1,1, w3,1, w5,1, w1,3,
w3,3, w1,5, u2,1, u4,1, u6,1, u2,3, u4,3, u6,3, u2,5, u4,5, u6,5, v1,2, v3,2,
v5,2, v1,4, v3,4, v5,4, v1,6, v3,6, v5,6. The three models give a very
close trend of hardening-type nonlinearity results but, especially

for the 24 DOF model, the amplitude of the response of the gen-
eralized coordinate w1,1 is different. In fact, for the model with 24
DOF only six out-of-plane coordinates are included in the model,
instead of 13 �39 DOF� and 9 �27 DOF�; this result indicates that,
even if w5,3, w3,5, w5,5 do not give significant contribution to the
trend of nonlinear response, they absorb significant energy from
the excitation. It can be observed that the 27 and 39 DOF models
present a nonclassical response with a strange tip, due to internal
resonances.

The six main generalized coordinates associated to the panel
response given in Fig. 4 for Model A with k=4�109 N/m2 are
reported in Fig. 7; only w1,1, w1,3, and w3,1 have significant am-
plitude. An internal resonance 4:1 between w1,1 and w3,1 is de-
tected very close to the peak of the response. This a typical phe-
nomenon for panels: subharmonic resonances in parametrically
excited circular cylindrical panels have been previously detected
by Baumgarten and Kreuzer �18�.

The four main generalized coordinates associated to the panel
response given in Fig. 5 for Model C with c=0 �fixed edges� are
reported in Fig. 8; only w1,1 and w3,1 have significant amplitude.
An internal resonance 3:1 between w1,1 and w3,1 is detected for
excitation frequency close to 0.94 
1,1 giving a characteristic loop
with unstable response in Fig. 8�a� �this is not an accuracy prob-
lem in the numerical calculation�.

The five main generalized coordinates associated to the panel
response given in Fig. 5 for Model C with c=5�104 N/rad �prac-
tically clamped edges� are reported in Fig. 9; all the coordinates

Fig. 8 Response of panel with fixed edges computed with model C for c=0; fundamental
mode „1,1…, f=0.021, �1,1=0.004, 39 DOF. „—… stable periodic response; „– –… unstable periodic
response. „a… Maximum of the generalized coordinate w1,1; „b… maximum of the generalized
coordinate w3,1; „c… maximum of the generalized coordinate w1,3; and „d… maximum of the
generalized coordinate w3,3.
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have significant amplitude in this case. An internal resonance 3:1
between w1,1 and w3,1 is detected close to 1.04 
1,1 giving a
secondary peak in Fig. 9�b�.

The time response computed for Model C with c=5
�104 N/rad �practically clamped edges� has been plotted in Fig.
10 for excitation frequency 
=1.06 
1,1, i.e., close to the peak of

the response; these results have been obtained by direct integra-
tion of the equations of motion by using the DIVPAG routine of
the Fortran library IMSL, while all the previous ones have been
obtained by using AUTO 97. Results show that the generalized
coordinate w1,1 has a harmonic response almost without superhar-
monics, but with significant translation inward. Other generalized

Fig. 9 Response of panel with fixed edges computed with model C for c=5Ã104 N/rad „practically
clamped…; fundamental mode „1,1…, f=0.021, �1,1=0.004, 39 DOF. „—… stable periodic response; „– –… unstable
periodic response. „a… Maximum of the generalized coordinate w1,1; „b… maximum of the generalized coor-
dinate w3,1; „c… maximum of the generalized coordinate w1,3; „d… maximum of the generalized coordinate
w3,3; and „e… maximum of the generalized coordinate w1,5.

Journal of Applied Mechanics JULY 2007, Vol. 74 / 653

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



coordinates present large superharmonics. Figure 10 also indicates
the phase relationship with respect to the excitation. The presence
of superharmonics and zero-frequency �mean value� component is
clarified in Fig. 11 with the frequency spectra.

7 Nonperiodic Response
The same shell studied in Sec. 6 with free in-plane boundary

conditions �Model A with k=0, �1,1=0.004� is considered here
and the 19 DOF model is used. Poincaré maps have been com-

puted by direct integration of the equations of motion, as de-
scribed in Sec. 5. The excitation frequency has been kept constant,

=
1,1 �linear resonance condition�, and the excitation amplitude
has been varied between 0 and about 5952 N. The force range has
been divided into 800 steps; 600 periods have been discharged
each time the force is changed in a step in order to eliminate the
transient motion. The initial condition at the first step is zero dis-
placement and zero velocity for all the variables; at the following
steps the solution at the previous step, with addition of a small

Fig. 10 Computed time response of the panel with fixed edges computed with model C for c=5
Ã104 N/rad „practically clamped… for excitation frequency �=1.06�1,1; fundamental mode „1,1…, f=0.021,
�1,1=0.004, 39 DOF. „a… Force excitation; „b… Generalized coordinate w1,1; „c… generalized coordinate w3,1; „d…
generalized coordinate w1,3; „e… generalized coordinate w3,3; and „f… generalized coordinate u2,1.
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perturbation in order to find a stable solution, is used as the initial
condition. The bifurcation diagram obtained by all these Poincaré
maps is shown in Fig. 12 where the load is decreased from
5952.4 N to 0. Simple periodic motion, subharmonic response,
amplitude modulations and chaotic response have been detected,
as indicated in Figs. 12�a� and 12�c�–12�e�. This shows very rich
and complex nonlinear dynamics of the circular cylindrical shal-
low shell subject to large harmonic excitation. In particular, for
excitation of 5952.4 N a chaotic response is obtained, which is
transformed into a subharmonic response with a period nine times
the excitation period around 5200 N. Then the response becomes
quasi-periodic �amplitude modulation�, returning to a simply pe-
riodic response around 4850 N. Around 4500 N there is a period-
doubling bifurcation, clearly visible in Fig. 12�c�, after which the
response again becomes simply periodic. In the range between
2500 and 800 N several regions of quasi-periodic response ap-
pear. A period-doubling bifurcation is detected around 670 N,
which ends in a chaotic region at 580 N. After that, a simply
periodic oscillation is detected, with a final jump to the undis-
turbed configuration at zero excitation.

Figure 12�b� gives the maximum Lyapunov exponent �1 asso-
ciated to the bifurcation diagram. It can be easily observed that: �i�

for periodic forced vibrations �1�0; �ii� for amplitude modulated
response �quasi-periodic� �1=0; and �iii� for chaotic response
�1�0. Therefore �1 can be conveniently used for identification of
the system dynamics. A three-dimensional representation of the
bifurcation diagram for the generalized coordinate w1,1 in the dis-
placement, velocity, and load space is shown in Fig. 12�e�, while
in Figs. 12�a�, 12�c�, and 12�d� the bifurcation diagrams have
been projected on a plane orthogonal to the velocity axis.

The study of the complete spectrum of the Lyapunov exponents
is often reported only for simpler systems �19�. In the present
case, all 38 Lyapunov exponents have been evaluated for the case

with excitation f̃ =5952.4 N, corresponding to chaotic response,
and are given in Fig. 13. In this case, four positive Lyapunov
exponents have been identified, allowing us to classify this re-
sponse as hyperchaos. The Lyapunov dimension �15� in this case
is dL=27.56. The shape of the curve joining the exponents in Fig.
13 is nearly antisymmetric. This is not surprising because the
system has small damping and for conservative systems the curve
can be proved to be exactly antisymmetric. Moreover, most of the
exponents have a very similar value �slightly negative�, which can
be related to damping; they form a characteristic nearly horizontal
segment.

Fig. 11 Frequency spectrum of the response of the panel with fixed edges computed with model C for c
=5Ã104 N/rad „practically clamped… for excitation frequency �=1.06�1,1; fundamental mode „1,1…, f
=0.021, �1,1=0.004, 39 DOF. „a… Generalized coordinate w1,1; „b… generalized coordinate w3,1; „c… generalized
coordinate w1,3; „d… generalized coordinate w3,3; and „e… generalized coordinate u2,1.
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8 Conclusions

In the present study, for the first time the effect of boundary
conditions on the trend of nonlinearity of circular cylindrical pan-
els is studied. This is of particular interest because results show

that a panel with the same geometry presents a significant soften-
ing type nonlinearity if simply supported or with fixed edges �in-
termediate cases�, while it has a relatively strong, hardening type
nonlinearity for free in-plane edges and for clamped edges �ex-
treme cases�.

Fig. 12 Bifurcation diagram of Poincaré maps and maximum Lyapunov exponent for the panel with
in-plane free edges „model A with k=0… under decreasing harmonic load f̃ with frequency �=�1,1 „linear
resonance condition…; �1,1=0.004; 19 DOF model. „a… Bifurcation diagram: generalized coordinate w1,1;
T=response period equal to excitation period; 2T=periodic response with two times the excitation pe-
riod; 9T=periodic response with nine times the excitation period; „PD… period-doubling bifurcation; „M…

amplitude modulations; „C… chaos; „b… maximum Lyapunov exponent; „c… bifurcation diagram: general-
ized coordinate w1,3; „d… bifurcation diagram: generalized coordinate w1,1, enlarged scale; and „e… 3D
representation of the bifurcation diagram: generalized coordinate w1,1.

656 / Vol. 74, JULY 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



For the specific boundary condition of free in-plane edges,
complex nonlinear dynamics is also investigated by using bifur-
cation diagrams from direct time integration and calculation of the
Lyapunov exponents and the Lyapunov dimension. Hyperchaos
has been detected, confirming the result of Yamaguchi and Nagai
�8� for a circular cylindrical shell with different dimensions �two
times thicker� and similar boundary conditions. In Ref. �8� a
smaller dimension of the model �8 DOF� was used and different
excitation �acceleration excitation with very different frequency,
in the subharmonic region�; only two positive Lyapunov expo-
nents were detected for specific excitation, with the smaller of the
two being 245 times smaller than the bigger one, i.e., almost neg-
ligible in magnitude. In the present case, all four positive
Lyapunov exponents are of the same order of magnitude giving
rise, without any doubt, to hyperchaos with quite large dimension.
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Dynamic Compressive Response
of Stainless-Steel Square
Honeycombs
The dynamic out-of-plane compressive response of stainless-steel square honeycombs has
been investigated for impact velocities ranging from quasi-static values to 300 ms−1.
Square-honeycomb specimens of relative density 0.10 were manufactured using a slotting
technique, and the stresses on the front and back faces of the dynamically compressed
square honeycombs were measured using a direct impact Kolsky bar. Three-dimensional
finite element simulations of the experiments were performed to model the response and
to help interpret the experimental results. The study has identified three distinct factors
governing the dynamic response of the square honeycombs: material rate sensitivity,
inertial stabilization of the webs against buckling, and plastic wave propagation. Mate-
rial rate sensitivity and inertial stabilization of the webs against buckling cause the front
and back face stresses to increase by about a factor of two over their quasi-static value
when the impact speed is increased from 0 to 50 ms−1. At higher impact velocities, plastic
wave effects cause the front face stress to increase linearly with velocity whereas the back
face stress is almost independent of velocity. The finite element predictions are in rea-
sonable agreement with the measurements. �DOI: 10.1115/1.2424717�

Keywords: honeycomb cores, impact testing, dynamic loads, material rate dependence,
dynamic buckling

1 Introduction
Several recent investigations have revealed that metallic sand-

wich panels have an advantage over monolithic plates of equal
mass in blast resistant structural applications �1–4�. The dynamic
performance of sandwich panels is strongly dependent upon their
core topology and the square-honeycomb core is a promising can-
didate �1,2�. The present study is a combined experimental and
numerical investigation of the dynamic out-of-plane compressive
response of square honeycombs in a sandwich configuration.

The out-of-plane compression of aluminium hexagonal honey-
combs under low speed impact is fairly well understood. In the
automotive industry, the focus of attention has been on the energy
absorption capacity of the hexagonal honeycomb of relative den-
sity 0.01��̄�0.04 subject to impact speeds �o below 30 ms−1. At
these speeds, the dynamic strength enhancement of the honey-
combs is primarily due to inertial stabilization of the honeycomb
webs against elastic buckling: the honeycombs are in axial equi-
librium and, consequently, the forces on the impacted and distal
ends are approximately equal; see for example Zhao and Gary �5�
and Wu and Jiang �6�. There exists little experimental data on the
dynamic compression of honeycombs at high speeds ��o

�100 ms−1� apart from the investigation by Harrigan et al. �7� on
the dynamic crushing of aluminium hexagonal honeycombs of
relative density �̄�1%. They measured the stresses on the im-
pacted end of these specimens and concluded that plastic wave
effects lead to an elevation in the dynamic plateau strength.

An optimization study by Xue and Hutchinson �2� has revealed
that square honeycombs with relatively densities of about 10%,
and made from stainless steel �which displays a strong strain hard-
ening response� are promising for applications in blast resistant
sandwich plates. The honeycombs of interest in such blast appli-
cations are different from those considered by Harrigan et al. �7�:

they have higher relative densities and are made from a material
with a high strain hardening capacity. Xue and Hutchinson �8�
have recently reported finite element simulations of the dynamic
response of such stainless steel square honeycombs subjected to
compressive velocities in the range 20–200 ms−1. Their simula-
tions highlighted three factors contributing to the dynamic
strength enhancement of the stainless steel square honeycombs:
material rate sensitivity, inertial stabilization of the webs against
buckling, and plastic wave propagation. For the loading rates of
interest in blast applications, they argued that plastic wave propa-
gation and plastic buckling occur over comparable timescales, and
substantial axial plastic straining can occur prior to the onset of
buckling.

The current study is an experimental validation of the findings
of Xue and Hutchinson �8�, and has the following scope. The
dynamic out-of-plane compressive response of square-honeycomb
lattice material is investigated for applied compressive velocities
ranging from quasi-static values to 300 ms−1. The stresses on the
impacted and distal ends of �̄=0.10 stainless-steel square honey-
combs are measured using a direct impact Kolsky bar, and high-
speed photography is employed to observe the dynamic deforma-
tion modes. The effect of specimen height is explored by
performing tests on specimens of height H=6 mm and 30 mm.
The experimental measurements are compared with three-
dimensional finite element simulations to gauge the fidelity of the
simulations and to help interpret the experimental findings.

2 Experimental Investigation

2.1 Specimen Configuration and Manufacture. Square
honeycombs have been manufactured from AISI type 304 stain-
less steel sheets of thickness b=0.30 mm using the technique de-
veloped by Côté et al. �9�. The sheets were cropped into rectangles
of height H equal to 6 mm and 30 mm, and length 21 mm. Cross-
slots �Fig. 1� of width �b=0.31 mm, and spacing L=6 mm, were
cut by electro-discharge machining �EDM� and the square honey-
comb was assembled as sketched in Fig. 1. A clearance of 10 �m
between sheet and slot allowed for easy assembly while providing
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a sufficiently tight fit to assure stability. Brazing was conducted
with Ni-Cr 25-P10 �wt % � at a temperature of 1120°C in an
atmosphere of dry argon at 0.03–0.1 mbar, and the braze was
applied uniformly over the sheets. Capillarity draws the braze into
the joints, and results in an excellent bond. All specimens com-
prised 3�3 cells and had dimensions 21 mm�21 mm�H. The
relative density of the square-honeycomb is to first order in b /L
given by

�̄ =
2b

L
�1�

giving a relative density of 10%. This was confirmed by weighing
the specimens.

2.2 Properties of the Constituent Materials. The uniaxial
tensile response of the AISI 304 stainless steel used to manufac-
ture the square honeycomb specimens was measured at a nominal
strain rate of 10−3 s−1, and the true tensile stress versus logarith-
mic strain curve is plotted in Fig. 2�a�. This material was tested in
the “as-brazed” condition to match that of the as-manufactured
specimens, and the measured 0.2% offset yield strength 	Y and
ultimate tensile strength 	UTS were 300 MPa and 700 MPa, re-
spectively. Post-yield, the stainless steel exhibits a linear harden-
ing response with a tangent hardening modulus Et�1.4 GPa.

Stout and Follansbee �10� have investigated the strain-rate sen-
sitivity of the AISI 304 stainless steel for strain rates in the range
10−4 s−1�
̇�104 s−1. Their data are replotted in Fig. 2�b�, where
the dynamic strength enhancement ratio R is plotted against the
plastic strain rate 
̇p for 10−3 s−1�
̇p�104 s−1. Here, R is defined
as the ratio of the stress 	d�
p=0.1� at an applied strain rate 
̇p to
the stress 	0�
p=0.1� at the quasi-static rate 
̇p=10−3 s−1. The
measured stress versus strain histories presented by Stout and Fol-
lansbee �10� indicate that R is reasonably independent of the level
of plastic strain 
p at which R is calculated. Thus, the dynamic
strength 	d versus plastic strain 
p history can be estimated from
the relation

	d�
p� = R�
̇p�	0�
p� �2�

where R�
̇p� is given in Fig. 2�b�. In the finite element simulations
of the experiments presented below, we employ this prescription
for the strain-rate sensitivity of the 304 stainless steel, with 	0�
p�
given by the measured quasi-static �
̇=10−3 s−1� stress versus
strain history �Fig. 2�a��. As an example, the estimated true tensile
stress versus logarithmic strain histories of the AISI 304 stainless

steel at three selected additional values of applied strain rate are
included in Fig. 2�a�.

2.3 Quasi-static Compressive Response of the Square
Honeycombs. The quasi-static compressive response of the
square honeycombs was measured in a screw-driven test machine
at an applied nominal strain rate of 10−3 s−1. A laser extensometer
was employed to measure the average nominal compressive strain

 while the nominal stress 	 was inferred from the measurements
from the load cell of the test machine.

The measured out-of-plane quasi-static compressive responses
of the square-honeycomb specimens are plotted in Fig. 3. The
specimens display a peak strength followed by softening and, fi-
nally, rapid hardening upon densification at a strain 
D
�0.6–0.7. Note that the H=30 mm specimen has a lower peak
strength and displays more abrupt softening. Côté et al. �9� have
already noted that the quasi-static collapse mode involves tor-

Fig. 1 Sketch of the manufacturing technique for the square
honeycomb

Fig. 2 „a… The measured quasi-static tensile stress versus
strain response of the AISI 304 stainless steel and the esti-
mated high strain rate response at three additional values of
the applied strain rate using the data of Stout and Follansbee
†10‡. „b… The dynamic strength enhancement ratio R as a func-
tion of plastic strain rate �̇p for the AISI 304 stainless steel at a
plastic strain �p=0.1 †10‡.

Fig. 3 Quasi-static compressive stress versus strain response
of the �̄=0.10 square honeycombs, of cell height H=6 mm and
H=30 mm
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sional plastic buckling of the cells, with the peak static strength 	s
accurately predicted by a plastic bifurcation analysis �9�.

2.4 Dynamic Test Protocol. The dynamic out-of-plane com-
pressive response of the square honeycombs was measured from a
series of direct impact tests in which the forces on the faces of the
honeycomb were measured via a strain-gauged Kolsky bar �11�.
Two types of tests were conducted to measure the forces on the
impacted and distal ends of the specimens, referred to subse-
quently as the front and back faces, respectively.

In the front face configuration �Fig. 4�a��, the test specimen is
attached to one end of the striker bar �sometimes known as the
backing mass, �7�� and the combined striker bar and specimen are
fired from a gas gun so that the specimen impacts the Kolsky bar
normally and centrally. In the back face configuration �Fig. 4�b��,
the specimen is placed centrally on the stationary Kolsky bar and
the striker bar is fired from the gas gun and impacts the specimen.
These two independent tests allow for a measurement of the tran-
sient force on both the impacted and distal faces of the specimen.

The kinetic energy of the projected striker governs the level of
compression attained and the imposed transient velocity at one
end of the specimen. We wished to compress the specimens at
approximately constant velocity and chose the striker masses ac-
cordingly. In the experiments conducted at low velocity ��o

�50 ms−1� and at intermediate velocity �50 ms−1��o

�200 ms−1� strikers of mass M =2.4 kg and 0.5 kg, respectively,
were employed. A striker of mass M =0.090 kg sufficed for the
high velocity �o�200 ms−1 experiments. The measurements and
finite element simulations presented below show that these striker
masses are sufficient to provide almost constant velocity compres-
sion of the square-honeycomb specimens for nominal compres-
sive strains of up to 40%.

The striker was given the required velocity by firing it from a
gas gun of barrel length 4.5 m and diameter 28.5 mm. No sabot
was employed as the cylindrical striker had a diameter equal to
28.0 mm. The bursting of copper shim diaphragms formed the
breech mechanism of the gun. The impact experiments were per-
formed at velocities ranging from approximately 10 ms−1 to
300 ms−1. The velocity of the projectile was measured at the exit
of the barrel using laser-velocity gates and the impacted end of the
Kolsky bar was placed 100 mm from the open end of the gun
barrel.

The setup of the Kolsky pressure bar �11� is standard. A circular
cylindrical bar of length 2.2 m and diameter 28.5 mm was made
from the maraging steel M-300 �yield strength 1900 MPa�. The
pressure history on the impacted end of the bar was measured by
diametrically opposite axial strain gauges placed approximately
10 diameters from the impact end of the bar. The elastic strain

histories in the bars were monitored using the two 120 � TML
foil gauges of gauge length 1 mm in a half-Wheatstone bridge
configuration. A strain bridge amplifier of cutoff frequency
500 kHz was used to provide the bridge input voltage and a digital
storage oscilloscope was used to record the output signal. The
bridge system was calibrated dynamically over the range of
strains measured during the experiments and was accurate to
within 3%. The longitudinal elastic wave speed was measured at
4860 ms−1, giving a time window of 800 �s before elastic reflec-
tions from the distal end of the bar complicated the measurement
of stress.

The response time and accuracy of the measurement system
were gauged from a series of calibration tests. We report the re-
sults of one such representative test as follows. A maraging steel
striker bar of diameter 28.5 mm and length 0.5 m was fired at the
Kolsky bar at a velocity �o=9.0 ms−1. The stress versus time re-
sponse measured by the strain gauges on the Kolsky bar is plotted
in Fig. 5. With time t=0 corresponding to the instant of impact,
the stress pulse arrives at the gauge location at t=66 �s. Elastic
wave theory predicts that the axial stress in the bar is �c�o /2
=175 MPa, where � and c are the density and longitudinal elastic
wave speed of steel, respectively. The measured peak value of the
stress is within 1% of this prediction. However, the measurement
system has a finite response time, with the stress rising to this
peak value in approximately 10 �s �see the inset in Fig. 5�. This
rise time places an operational limit on measuring the dynamic
response of the square honeycombs. It becomes significant at the
higher velocities because significant compression of the specimen
is achieved within the first 10 �s. The measured stress in the
calibration test drops back to zero at t=270 �s; this is the time for
propagation of an axial stress wave down the bar, followed by
reflection of the elastic wave from the distal end of the striker bar
back to the strain gauge.

3 Experimental Results for the Dynamic Compression
of Square Honeycombs

We first present the dynamic compression response of the H
=30 mm square-honeycomb specimens and then contrast these
measurements with those for the H=6 mm specimens.

3.1 The H=30 mm Square Honeycombs. The measured
front and back face axial stress versus normalized time t̄
��ot /H histories for the H=30 mm specimens are presented in
Figs. 6�a�, 7�a�, and 8�a� for impact velocities �o=20 ms−1,
50 ms−1, and 240 ms−1, respectively. The time t is measured from
the instant of impact and thus the normalized time t̄ is a measure
of the nominal compressive strain of the square-honeycomb speci-

Fig. 4 Sketches of the direct impact Kolsky bar setup for mea-
suring the stress versus time histories in „a… front face and „b…
back face configurations. All dimensions are in mm.

Fig. 5 Stress versus time history measured in the Kolsky bar
during a calibration test. A 0.5 m long steel striker is fired at the
Kolsky bar at �o=9.0 ms−1.
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mens, assuming compression at a uniform velocity �o over the
deformation history. In these figures, the front and back face
stresses are defined from the measured front face force Ff and
back face force Fb as

	 f �
Ff

Ao
�4a�

and

	b �
Fb

Ao
�4b�

respectively, where Ao=21�21 mm2 is the cross-sectional area of
the square-honeycomb specimens. High-speed photographic se-
quences of the deformation of the specimens in the front face
configuration are given in Figs. 6�b�, 7�b�, and 8�b�. The inter-
frame times in Figs. 6�b� and 7�b� are 100 �s while the sequences
in Fig. 8�b� were taken at 40 �s intervals. The exposure time of
each photograph is 20% of the interframe time in all cases. The
dust clouds in the high-speed photographs are associated with
tearing of the square honeycombs along the brazed joints. This
was confirmed by post-test visual inspections of the dynamically
tested specimens. �Tearing of the joints was also observed in the
quasi-static tests.� The dynamic measurements show two qualita-
tively distinct behaviors: �1� the response for �o=20 ms−1 and
50 ms−1, and �2� the response for �o=240 ms−1.

1. �o=20 ms−1 and 50 ms−1. The measured front and back face
stresses equalize within t�10 �s �or �ot /H=0.01–0.02�.
Recall that the response time of the measurement system is
10 �s. Thus, the early differences between the front and
back face stresses are likely to be associated with the mea-
surement system and we conclude that the specimens are in
axial equilibrium over almost the entire deformation history.

Similar to the quasi-static case, the square-honeycomb
specimens have a distinct stress peak. These peak stresses
increase with impact velocity and at �o=50 ms−1 they are
approximately twice the quasi-static value. Material strain
rate sensitivity alone cannot account for the increase in the
peak stress and dynamic stabilization of the webs against
buckling is expected to play an important role.

2. �o=240 ms−1. The measured front face stress is approxi-
mately constant over the deformation history �to within
“ringing” of the measurements� up to the specimen densifi-
cation strain of �ot /H�0.9. Moreover, the front face stress
exceeds the back face stress over the deformation history.
This indicates that the specimen is not in equilibrium, with
wave propagation effects playing a dominant role. This is
substantiated by the high-speed photographs �Fig. 8�b��:
shortening of the specimen is concentrated near the im-
pacted end, with the distal end of the specimen undergoing
only small plastic deformations.

The measured peak front face stress 	 f
p and back face stress 	b

p

are normalized by the peak quasi-static value 	s and are plotted in
Fig. 9 as a function of the impact velocity �o. Over the range 0
��o�50 ms−1, the front and back face stresses remain equal and
attain double their quasi-static values. For �o�50 ms−1, the back
face stress remains approximately constant at its value for �o
=50 ms−1 while the front face stress increases approximately lin-
early with velocity. These observations suggest that the following
three mechanisms provide the dynamic strength enhancements in
these experiments.

1. Material strain rate sensitivity. The dynamic strength en-

Fig. 6 „a… Measured front and back face stress versus norma-
lised time histories in the H=30 mm honeycomb specimens im-
pacted at �o=20 ms−1; and „b… the corresponding high speed
photographic sequence of the deformation in the front face
configuration at an interframe time of 100 �s. The finite ele-
ment predictions „constant velocity boundary condition… are in-
cluded in „a….

Fig. 7 „a… Measured front and back face stress versus norma-
lised time histories in the H=30 mm honeycomb specimens im-
pacted at �o=50 ms−1; and „b… the corresponding high speed
photographic sequence of the deformation in the front face
configuration at an interframe time of 100 �s. The finite ele-
ment predictions „constant velocity boundary condition… are in-
cluded in „a….
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hancement of the square honeycombs due to the material
strain rate is estimated from the measurements of Stout and
Follansbee �10� by assuming uniform compression of the
square honeycombs at a rate 
̇p=�o /H. The strength en-
hancement ratio R�
̇p� is plotted versus impact velocity in
Fig. 9. Comparisons with the measured dynamic strength
enhancement ratios 	b

p /	s and 	 f
p /	s suggest that the stress

enhancements for �o�20 ms−1 are largely due to the mate-
rial strain rate sensitivity. Material rate sensitivity cannot,
however, account for the strength enhancements at the
higher velocities.

2. Dynamic buckling. As discussed in Section 2.3, the peak
quasi-static strength of the square honeycombs is set by tor-
sional plastic buckling of the cells of the square honeycomb.
Under dynamic loading, inertial stabilization results in an
enhanced buckling strength due to the activation of higher
order buckling modes. Abrahmson and Goodier �12� and
Calladine and English �13� have elaborated on this in the
case for rods which have attained axial equilibrium. This
higher order buckling is clearly seen in the high-speed pho-
tographs in Fig. 8�b�. In the velocity range 20 ms−1��o
�50 ms−1, the front and back face stresses are approxi-
mately equal but material rate sensitivity alone cannot ac-
count for the dynamic strength enhancement. The additional
strengthening is attributed to the enhanced dynamic buckling
strength of the square honeycombs due to inertial stabiliza-
tion.

3. Plastic wave propagation. At high impact velocities, a plastic
wave moves along the prismatic axis of the honeycomb.
Prior to the onset of buckling of the webs of the square
honeycombs, one-dimensional elastic–plastic wave theory
can be used to estimate dynamic stress on the front face of
the honeycomb as the wave propagates through the thick-
ness of the honeycomb. In the small strain, rate-independent
limit, the front face stress is given by

	 f =
Ff

Ao
= 	Y�̄ + �ccpl��o −

	Y

�sce
� � 	Y�̄ + �ccpl�o �5�

where ce and cpl are the elastic and plastic wave speeds,
respectively, of the honeycomb parent material of yield
strength 	Y. The density of the honeycomb is �c� �̄�s in
terms of the density �s of the parent material. During propa-
gation of the plastic wave to the back face, the back face
stress has no inertial contribution and is given by 	b=	Y�̄. It
remains to specify an appropriate value for 	Y in order to
determine 	 f and 	b. Here we arbitrarily take 	Y to be the
yield strength of the solid material at a strain rate 
̇p

=104 s−1 �the nominal strain rate for a honeycomb of height
H=30 mm compressed at �o=300 ms−1� in order to illus-
trate the predictions of the one-dimensional wave model,
and plot Eq. �5� with cpl�	Et /�s�410 ms−1 in Fig. 9. The
good agreement of the front face stress prediction with the
experimental measurements for �o�50 ms−1 suggests that
one-dimensional plastic wave propagation sets the peak
front face stresses at these higher velocities.

3.2 The Effect of Specimen Height. The measured front and
back face stress versus time histories of the H=30 mm and H
=6 mm square-honeycomb specimens for an impact velocity �o
=100 ms−1 are plotted in Figs. 10�a� and 10�b�, respectively. Plas-
tic wave effects play a significant role in the H=30 mm specimen
with the front and back face forces equalizing only for �ot /H
�0.1. Recall that the plastic wave speed in 304 stainless steel is
cpl�410 ms−1. Thus, we expect the plastic wave to reach the rear
face at the longer time �ot /H�0.25. The finite element calcula-
tions reported subsequently show that material rate sensitivity re-
sults in the specimen attaining axial equilibrium sooner than esti-
mated from a rate independent plastic wave theory due to an
“increased” plastic wave speed resulting from smearing out of the
plastic shock. �The width of the shock front in a material with a
linear viscous rate sensitivity scales as  / ��scpl� where �s is the
density of the material and  the viscosity; see Kaliski and Wlo-
darczyk �14�.� In contrast, the front and back face stresses in the
H=6 mm specimen are approximately equal over the entire defor-
mation history. This is partly due to the smearing of the plastic
shock wave and partly a result of the10 �s response time of the
measurement system.

The measured peak front and back face stresses �normalized by
the corresponding quasi-static peak strength� for the H=6 mm

Fig. 8 „a… Measured front and back face stress versus norma-
lised time histories in the H=30 mm honeycomb specimens im-
pacted at �o=240 ms−1; and „b… the corresponding high speed
photographic sequence of the deformation in the front face
configuration at an inter-frame time of 40 �s. The finite element
predictions „constant velocity boundary condition… are in-
cluded in „a….

Fig. 9 Measured peak front face stress �f
p and back face

stress �b
p versus impact velocity �o in the H=30 mm honey-

comb specimens. The measured dynamic stresses are normal-
ized by peak quasi-static stress �s from Fig. 3. The predictions
of the dynamic stresses based on material strain-rate sensitiv-
ity and one-dimensional plastic wave propagation are included.
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square honeycomb are plotted in Fig. 11 as a function of the
impact velocity �o. Included in Fig. 11 are estimates of the dy-
namic front and back face stresses based on the material strain-
rate sensitivity and the front face stresses due to plastic wave
propagation effects, as discussed in Sec. 3.1. �Again, 	Y in Eq. �5�
is interpreted as the yield strength of the solid material at a strain
rate 
̇p=104 s−1.� The basic mechanisms of dynamic strength en-
hancements in these specimens are similar to those in the H
=30 mm specimens. However, in these shorter specimens, mate-
rial rate sensitivity smears the plastic shock over the entire height
�H=6 mm� of the specimen and thus the front and back face

stresses are approximately equal over the range of velocities in-
vestigated here. Note that the front face stresses for the H
=6 mm and H=30 mm specimens are approximately equal for
velocities �o�50 ms−1 �Figs. 9 and 11�. This confirms that veloc-
ity rather than applied nominal strain rate is the governing param-
eter at these higher rates of compression.

4 Finite Element Investigation
A limited finite element �FE� investigation of the dynamic com-

pression of the square-honeycomb specimens has been performed.
The aims of this investigation are:

1. To determine the accuracy of three-dimensional finite ele-
ment calculations in predicting the dynamic compressive re-
sponse of the square honeycombs;

2. To use the finite element calculations to investigate the ef-
fect of striker deceleration on the measured dynamic re-
sponse; and

3. To demonstrate the effect of the response time of the mea-
surement system on the measured early time dynamic re-
sponse of the square honeycombs.

4.1 Three-Dimensional FE Simulations of the Dynamic
Compression of the Square Honeycombs. All the FE simula-
tions were conducted using the explicit version of the commercial
finite element package ABAQUS. The geometry of the honey-
comb specimens was identical to that employed in the experimen-
tal investigation and the honeycombs were modeled using linear
shell elements �S4R in the ABAQUS notation� with b as the thick-
ness of the honeycomb walls. A mesh sensitivity study showed
that an element size of b /2 sufficed to give a converged solution.
All computations reported here employed such a mesh. Rigid,
massless plates �discretized using four-noded rigid elements,
R3D4 in the ABAQUS notation� were tied to both the front and
back faces of the specimens and the general contact option in
ABAQUS was employed to provide hard, frictionless contact be-
tween all surfaces in the model. The tie constraint is appropriate if
negligible sliding occurs at the interface between the honeycomb
and striker mass and Kolsky bar. High-speed photographs of the
experiments suggest that this is an appropriate assumption for
modeling purposes.

Most of the computations were conducted by compressing the
specimen at a constant applied velocity as follows. The front rigid
plate was constrained to move only in the axial direction �i.e., in
the direction of the height H� of the specimen while the back face
was fully clamped. A constant velocity �o in the axial direction
was imposed on the front rigid plate and the axial forces on the
front and back faces were monitored as a function of time to
determine the front and back face stress versus time history.

In a few simulations, the experimentally applied loadings in the
front and back face configurations were also mimicked. In the
front face configuration, a point mass M was attached to the back
face. The specimen, back face and mass M were then given an
initial velocity �o in the axial direction with the front rigid plate
fully clamped and the back face and point mass restricted to move
only in the axial direction. Similarly, in the back face configura-
tion, the back face was fully clamped and the point mass �now
attached to the front face� was given an initial velocity �o along
with the rigid front plate. The point mass and front plate were
constrained to move only in the axial direction.

4.2 Material Properties. It was assumed that the square-
honeycomb specimens comprised AISI 304 stainless-steel sheets.
Unless otherwise specified, the stainless steel was modeled as
J2-flow theory rate dependent solid of density � f =8060 kg m−3,
Young’s modulus E=210 GPa and Poisson ratio �=0.3. The
uniaxial tensile true stress versus equivalent plastic strain curves
at plastic strain rates 10−3 s−1�
̇p�104 s−1 were tabulated in
ABAQUS using the prescription described in Sec. 2.2 and em-

Fig. 10 The measured front and back face stress versus nor-
malised time histories of the „a… H=30 mm; and „b… H=6 mm
square-honeycomb specimens for an impact velocity �o
=100 ms−1. The finite element predictions „constant velocity
boundary condition… are included in the figures.

Fig. 11 Measured dynamic peak front „�f
p
… and back „�b

p
… face

stresses in the H=6 mm honeycomb specimens as a function
of the impact velocity �o. The measured dynamic stresses are
normalized by peak quasi-static stress �s from Fig. 3. The pre-
dictions of the dynamic stresses based on material strain-rate
sensitivity and one-dimensional plastic wave propagation are
included.
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ploying the data of Fig. 2.
A comparison between the quasi-static FE predictions and mea-

surements is included in Fig. 3; see Zok et al. �15� for details of
such calculations and reasons for the discrepancies between the
measurements and the FE predictions.

4.3 Effect of Initial Imperfections. The effect of initial im-
perfections on the finite element predictions of the dynamic com-
pressive response was first investigated. Dynamic compression
typically results in the activation of higher order buckling modes
as seen in the high-speed photographs presented above. The buck-
ling wavelengths are a strong function of the material properties
and compression velocity as discussed by Abrahamson and
Goodier �12� for the dynamic buckling of rods. Consequently, we
investigated the effect of the magnitude and mode of imperfection
on the dynamic compressive response of the square honeycombs.

Four modes of initial imperfections were considered. Modes I
and II are the two lowest static eigenmodes with the Mode II
wavelength half that of Mode I. In order to investigate the effect
of a distribution of imperfection wavelengths we also considered
modes which are the sum of the first 20 and 40 static eigenmodes
�equal maximum amplitude for each mode�. These will be subse-
quently referred to as Modes III and IV, respectively. All four
modes are shown in Fig. 12 for the H=30 mm honeycomb.

The FE predictions of the stress versus time histories of the
H=30 mm honeycomb for applied velocities �o=20 ms−1 and
240 ms−1 are plotted in Figs. 13�a� and 13�b�, respectively. The
front and back face stresses are almost equal for �o=20 ms−1 and
thus for the sake of clarity only the front face stresses are shown
in Fig. 13�a�. In each case, results are plotted for the four initial
imperfection modes with a maximum imperfection amplitude of
0.05b. We observe that the choice of the initial imperfection mode
has a negligible effect on the predicted stress versus time histories.
In fact, for the range of compressive velocities considered here,
the FE calculations predict a response that is insensitive to the
mode of the imperfections for imperfection amplitudes in the
range 0.02b–0.1b. This holds for both the H=30 mm and H
=6 mm honeycombs. All the calculations reported subsequently
employ the Mode I imperfection with a maximum imperfection
amplitude of 0.05b.

4.4 Sensitivity of Response to Choice of Loading
Condition. The striker mass M in the experiments was chosen to
give an approximately uniform compression velocity over a nomi-
nal compressive strain of about 40%. Here we employ FE calcu-
lations to verify this and also to compare the FE predictions of the
striker velocity over the deformation history of the specimens
with those inferred from measurements.

FE predictions of the front and back face stresses of the H
=30 mm square honeycomb with �o=20 ms−1 are shown in Fig.
14 for constant velocity compression and for projectile impact
with a given initial velocity. In the impact simulations, a point
mass M =2.4 kg was attached to the square honeycomb to repre-
sent the striker employed in the experiments. Both sets of FE
predictions are nearly identical for �ot /H�0.2 with small discrep-
ancies between the two sets of simulations for �ot /H�0.2.

We proceed to estimate the velocity reduction of the striker in
the experiments and to compare these estimates with the FE pre-

Fig. 12 The four modes of initial imperfections introduced into
the FE model of the H=30 mm square honeycomb: „a… Mode I;
„b… Mode II; „c… Mode III; and „d… Mode IV. A section through the
midplane of the honeycomb is shown in each case.

Fig. 13 FE predictions of the front and back face stress versus
time histories for the H=30 mm compressed at a velocity „a…
�o=20 ms−1

„front face…; and „b… �o=240 ms−1
„front and back

face…. In both cases, results are shown for the four modes of
initial imperfections with an imperfection amplitude 0.05b.

Fig. 14 A comparison between the FE predictions for a con-
stant applied velocity and for impact boundary conditions „H
=30 mm honeycomb specimen with �o=20 ms−1

…
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dictions. This reduction is most severe in the back face configu-
ration since the striker is decelerated by a force associated with
driving along the plastic shock wave. The striker velocity versus
time relation in the back face configuration is given by

�b�t� = �o −
1

M
0

t

Ff dt �6�

where Ff is the measured force exerted by the square-honeycomb
specimens in the corresponding front face configuration. The nor-
malized striker velocity �b�t� /�o �inferred from measurements� in
the back face configuration of the H=30 mm specimens are plot-
ted in Fig. 15 as a function of the normalized time �ot /H for the
�o=20 ms−1 and 50 ms−1 cases. These calculations were per-
formed with M =2.4 kg to match the striker mass employed in the
experiments. It is clear from Fig. 15 that, while there is a negli-
gible reduction in velocity for the �o=50 ms−1 case, the velocity
of the striker reduces by about 20% for the �o=20 ms−1 case at
�ot /H�0.35. The corresponding FE predictions of the striker ve-
locity in the back face configuration are included in Fig. 15 �mea-
sured directly from the velocity of the point mass in the FE cal-
culations�. The FE calculations predict slightly less velocity
reductions than those estimated from the experimental measure-
ments. This is likely to be related to the “ringing” in the experi-
mental measurements which results in an overestimation of the
front face force. Similar estimates for the other impact velocities
confirmed that negligible striker velocity reductions occurred in
all experiments with �o�50 ms−1. These experimental estimates
and FE predictions confirm that the impact experiments can be
regarded as constant velocity experiments over the practical de-
formation regime 0��ot /H�0.4.

4.5 Accuracy of Predictions for the H=30 mm Square
Honeycombs. FE predictions of the front and back face stresses
on the H=30 mm specimens are included in Figs. 6�a�, 7�a�, and
8�a� for a constant velocity of �o=20 ms−1, 50 ms−1, and
240 ms−1, respectively. The simulations were terminated within
the FE code when large rotations of the shell elements resulted in
a loss of accuracy of the simulations. The FE simulations capture
the measured stresses in the �o=20 ms−1 and 50 ms−1 experiments
to reasonable accuracy. The FE predictions of the deformation
mode for the �o=50 ms−1 case are plotted in Fig. 16 at t=55 �s
and 155 �s. It is noted that the observed deformation �Fig. 7�b��
and predicted deformation modes �Fig. 16� are quite different; a
similar discrepancy in deformation mode was observed for �o
=20 ms−1 although the comparison is not shown explicitly. This
discrepancy is likely to be associated with the tearing of the
brazed joints in the experiments �and not accounted for in the FE
calculations�. Important differences between the measured and FE
predictions of the compressive response at �o=20 ms−1 and

50 ms−1 are as follows.
1. The FE simulations predict a sharp rise of the stresses on the

front and back faces due to the presence of the elastic stress wave.
Such a sharp rise is not observed in the experiments. This is likely
to be related to the fact that the response time of the measurement
apparatus is about 10 �s and thus the experimental measurements
are unable to capture the instantaneous rise in stress due to the
arrival of the elastic wave.

2. At �ot /H�0.20, the FE simulations predict a sudden in-
crease in the stresses on the back face due to contact between the
cell walls as seen in Fig. 16 for the �o=50 ms−1 simulation. In
reality, a much gentler increase in the measured stresses occurs.
We attribute this discrepancy to tearing of the brazed joints of the
square honeycombs as evidenced from the dust clouds in the pho-
tograph at t=255 �s in Fig. 8�b�. This effect is not included in the
FE simulations and is likely to result in an overprediction of the
measured stress.

The comparisons between the FE simulations and measure-
ments for the �o=240 ms−1 case �Fig. 8�b�� show larger discrep-

Fig. 15 Experimental estimates and FE predictions of the nor-
malized striker velocity �b„t… /�o as a function of the normalized
time �ot /H for the back face configuration with initial striker
velocities of �o=20 ms−1 and 50 ms−1

Fig. 16 The FE predictions of the deformation mode of the H
=30 mm honeycomb specimen, subjected to a constant applied
velocity �o=50 ms−1 at: „a… t=55 �s; and „b… t=155 �s. These
times correspond to the times of the high speed photographs
in Fig. 7„b…. A section through the midplane of the honeycomb
is shown.
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ancies. The differences between the measurements and predictions
of the stresses are mainly due to the slow response time of the
measurement apparatus, with the predictions and measurements in
reasonable agreement for �ot /H�0.2. The oscillations in the mea-
sured stress history are due to flexural waves induced in the Kol-
sky bar by slight misalignment of the impact and are neglected in
the FE simulations. Again, the FE calculations predict a rise in the
back face stress at �ot /H�0.4. This rise is not observed in the
experiments due to tearing of the brazed joints of the specimens.

4.6 FE Simulations to Elucidate the Role of Material Rate
Sensitivity. The measurements indicate that the plastic wave
reaches the distal end of the specimen earlier than predicted by
rate independent, small strain plasticity theory. For example, with
a plastic wave speed of cpl�410 ms−1 and an input speed of �o
=100 ms−1, it is predicted that the plastic wave will increase the
stress on the back face to 100 MPa at �ot /H�0.25. However, the
measurements in Fig. 10 suggest that the plastic wave arrives
much earlier, at �ot /H�0.1. The FE predictions are in reasonable
agreement with the experimental measurements for t�10 �s, that
is for �ot /H�0.01 and 0.03 for the H=30 mm and 6 mm speci-
mens, respectively. This confirms that the high stress measure-
ments over 0.1��ot /H�0.25 are not an artefact of the measure-
ment system but are probably related to an increased plastic wave
speed associated with the rate sensitivity of the 304 stainless steel.

We proceed to check the effect of material rate sensitivity by
performing FE simulations with the 304 stainless steel modeled as
a rate independent J2 flow theory solid with a uniaxial tensile
stress versus plastic strain response given by the 
̇p=10−3 s−1 data
in Fig. 2�a�. A comparison between the rate independent and rate
dependent FE predictions �constant applied velocity� of the front
and back face stresses on H=30 mm and 6 mm square honey-
combs is shown in Figs. 17�a� and 17�b�, respectively, for �o
=100 ms−1. The rate dependent and rate independent FE calcula-
tions predict that the plastic wave arrives at the back face at
�ot /H�0.15 and �ot /H�0.2, respectively. Thus, the FE calcula-

tions demonstrate that material strain rate sensitivity can account
for the increased plastic wave speed. The dynamic strength en-
hancement due to material rate effects are also clearly seen in Fig.
17: the rate dependent FE calculations predict that both the front
and back face stresses are about 25% higher than those in the rate
independent case.

5 Concluding Remarks

Square-honeycomb specimens of relative density �̄=0.10 and
heights H=30 mm and 6 mm were manufactured by slotting to-
gether 304 stainless-steel sheets and then brazing together the as-
sembly. The out-of-plane compressive response of these speci-
mens was measured for velocities ranging from quasi-static values
to �o=300 ms−1. The stresses on both the front and back faces of
the square honeycombs were measured in the dynamic tests using
a direct impact Kolsky bar.

Torsional plastic buckling of the webs is the collapse mode
under quasi-static loading. Three distinct mechanisms govern the
dynamic response of the square honeycombs: �i� material rate sen-
sitivity; �ii� inertial stabilization of the webs against buckling; and
�iii� plastic wave propagation. In the H=30 mm specimens, ef-
fects �i� and �ii� are dominant for �o�50 ms−1 with the front and
back face stresses increasing by about a factor of two over their
quasi-static values. At higher velocities, plastic wave effects be-
come increasingly important with the back face stress remaining
approximately constant at its value for �o=50 ms−1 and the front
face stress increasing approximately linearly with velocity. The
peak front face stresses in the H=6 mm and H=30 mm cases are
approximately equal at the higher velocities indicating that veloc-
ity rather than strain rate governs the response of these specimens
under high rates of compression.

Three-dimensional finite element simulations capture the ex-
perimental measurements to reasonable accuracy. Discrepancies
between the measurements and predictions are attributed to: �i� a
response time of 10 �s by the measurement apparatus; and �ii�
tearing of the square honeycombs along the brazed joints. This
tearing leads to a significant drop in the transmitted load and in
the energy absorbed by the square honeycomb.
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The Analysis of Tensegrity
Structures for the Design of a
Morphing Wing
Current attempts to build fast, efficient, and maneuverable underwater vehicles have
looked to nature for inspiration. However, they have all been based on traditional pro-
pulsive techniques, i.e., rotary motors. In the current study a promising and potentially
revolutionary approach is taken that overcomes the limitations of these traditional
methods—morphing structure concepts with integrated actuation and sensing. Inspiration
for this work comes from the manta ray (Manta birostris) and other batoid fish. These
creatures are highly maneuverable but are also able to cruise at high speeds over long
distances. In this paper, the structural foundation for the biomimetic morphing wing is a
tensegrity structure. A preliminary procedure is presented for developing morphing
tensegrity structures that include actuating elements. To do this, the virtual work method
has been modified to allow for individual actuation of struts and cables. The actuation
response of tensegrity beams and plates are studied and results are presented. Specifi-
cally, global deflections resulting from actuation of specific elements have been calcu-
lated with or without external loads. Finally, a shape optimization analysis of different
tensegrity structures to the biological displacement field will be presented.
�DOI: 10.1115/1.2424718�

Keywords: tensegrity, morphing wing, actuation, force density, biomimetics,
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1 Introduction
The family Myliobatidae can achieve large amplitude flapping

type of locomotion and have been observed traveling at speeds
greater than 1 m/s over long distances. It is these characteristics
that make them attractive to study and mimic. By mimicking the
movements of these species, a new underwater vehicle design is
explored. The goal of this research is to develop a structure that
can propel an underwater vehicle with the swift and silent motions
of the manta ray. To achieve this goal, a lightweight control sur-
face, manipulated by an active tensegrity structure, with high out-
of-plane stiffness and a large range of motion under large restrain-
ing moments is being studied. Tensegrity structures are comprised
of a set of discontinuous compressed struts held together with a
continuous web of tensioned cables. They offer high strength to
mass ratios, low mechanical wear in dynamical applications, and
high deformability with minimal input energy, which makes these
systems excellent candidates for the structural layout of a mor-
phing wing. Actuation of the structure is achieved by replacing
passive cables and struts with actuators. Using these structures has
the potential to create a new generation of highly efficient, ma-
neuverable air and sea vehicles. Steps towards designing and
building a highly deformable and versatile morphing wing, while
keeping a high enough stiffness to withstand environmental forces
and perturbations, are presented.

2 Tensegrity Background
Around 1963, tensegrity structures �Fig. 1� were originally de-

veloped by Emmerich, Fuller, and Snelson, with Fuller coining
the word tensegrity as a contraction of the words “tensional integ-
rity.” In recent years, tensegrity structures became of engineering
interest as their potential in load bearing applications was realized,

but still today these structures have not been used in many prac-
tical circumstances. To create usable structures researchers have
devoted much time to the problem of form finding, which is a
procedure used to determine the spatial layout of the structure.

Initial efforts by Fuller �1�, Snelson �2�, and Kenner �3� focused
on using geometrical techniques to solve the problem of form
finding. However, the internal self-stress forces of the members
must be taken into account in order to have a correct theoretical
model for form finding. Pellegrino �4� showed for some polyhedra
that the geometric form-finding techniques were not accurate
when compared to a physical model. As a result of this discrep-
ancy several methods have been developed to accurately predict
the form of a tensegrity structure. They can be categorized into
two main groups: �i� kinematical methods and �ii� statical methods
�5�. The kinematical group includes analytical, nonlinear optimi-
zation, and dynamic relaxation techniques. These methods either
keep the struts lengths constant while shrinking the cables lengths
or vice versa, mimicking the physical assembly of a tensegrity
structure. The analytical methods give solutions for n-fold sym-
metric structures, i.e., prismatic tensegrities. The optimization and
relaxation methods can handle generalized structures, but they
become computationally intensive when asymmetries or many
nodal points are involved. The statical techniques encompass ana-
lytical solutions, the force density method, the energy minimiza-
tion method, and the reduced coordinates method. Again the ana-
lytical solutions are only viable for simple cases. The force
density method, first develop by Schek �6�, gives a set of linear
equilibrium equations that can analyze large structures as well as
asymmetric tensegrities. The energy minimization method is simi-
lar to the force density method, however the goal is to find the
equilibrium configuration by finding the minimum potential en-
ergy state of the members. The reduced coordinates method is an
approach that derives the equilibrium equations from the principle
of virtual work, giving a model that has more control than the
force density or energy minimization methods but requires more
extensive calculations. Recently, Masic �7� has developed a form-
finding procedure—based on the force density method—that gives
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adequate control as well as quick computational times. Masic’s
procedure takes the force density method a step further by adding
shape constraints to the structure, allowing one to manipulate the
entire shape of the structure. This adapted method presents an
opportunity to develop active structures, where the desired mor-
phologies are achieved through the changes in lengths of possibly
all of the members.

3 Methods

Before the tensegrity static equilibrium equations are presented
some variables and operators must be defined.

DEFINITION 1. A nodal point, �k, k=1, . . . ,nn, where nn is the
number of nodes, is defined as a point where compressive mem-
bers and tensile members connect. The vector p= �xT ,yT ,zT�T is
defined as the vector of nodal point locations which is decom-
posed into the x, y, and z coordinates of the nodal points, where
x�Rnn�1, y�Rnn�1, z�Rnn�1, and p�R3nn�1.

DEFINITION 2. Element ei= ��k ,� j�, k� j, i=1, . . . ,ne radiates
from node �k and terminates at node � j. The direction of ei is
arbitrary, but once the direction is chosen for a given set of ele-
ments, then they must be used consistently.

DEFINITION 3. The cable connectivity matrix, Ccables
�Rnn�ncables, is

Ccables,ji = �0, if ei does not connect to � j

1, if ei terminates at � j

− 1, if ei radiates from � j

,
where i = 1, . . . ,ncables

j = 1, . . . ,nn

The strut connectivity matrix, Cstruts�Rnn�nstruts, is

Cstruts,ji = �0, if ei does not connect to � j

1, if ei terminates at � j

− 1, if ei radiates from � j

,
where i = 1, . . . ,nstruts

j = 1, . . . ,nn

The one-dimensional connectivity matrix, C1�Rnn�ne, is

C1 = �− Ccables Cstruts � �1�

The connectivity matrix, C�R3nn�3ne, is

C = �C1 0 0

0 C1 0

0 0 C1 � �2�

DEFINITION 4. The one-dimensional force density vector, �1

�Rne�1, is

�i
1 =

f i

Li
= EiAi� 1

Lm,i
−

1

Li
	 �3�

E is the Young’s modulus; A is the area of the member; Lm is the
unstressed manufacturing length of the member; and L is the final
equilibrium length of the member. L is a function of nodal point
positions, p, and is the length of a member that is in static equi-
librium with the other members of the structure. The force density
vector, ��R3ne�1, is

� = ��1

�1

�1 � �4�

DEFINITION 5. The operator �∧� is a vector operator that diago-
nalizes a vector

x̂ = diag��x1,x2, . . . ,xn�T� = �
x1 0 0 0

0 x2 0 0

0 0 � 0

0 0 0 xn

� �5�

These definitions are similar to those presented by Masic in
Ref. �7�, but they differ due to the lack of member identifiers

presented by Masic that describe whether a member is in com-
pression or tension. By not having member identifiers, negative
force densities are found for the compressive members and posi-
tive force densities for the tensile members. However, for the
purposes of this paper the identifiers are not necessary and are
therefore not presented in this formulation.

All of the statical form-finding methods for tensegrity structures
find a set of equilibrium equations that are either determined by
summing forces acting on a structure or using potential energy
considerations. The virtual work method �VWM� uses energy con-
siderations and the principle of virtual work to derive the equilib-
rium equations. The derivation is outlined in Ref. �8�. To obtain
the set of equilibrium equations used in this work the virtual work
method was employed. Once the set of nonlinear algebraic equi-
librium equations are obtained they can be represented in a com-
pact matrix form as the following

C�̂�p�CTp = fext �6�

This constitutes a set of 3nn unknowns, p, with the same number
of nonlinear equations. This set of equations can be solved nu-
merically using Matlab’s fsolve function. Since these equations
are in Cartesian coordinates, it is now simple to constrain any
node to a desired value. In doing this, as can be seen from the
virtual work approach, equations that are differentiated by a con-
strained coordinate are removed. This theoretical model gives
control over all of the elements in the structure. When determining
the form of a tensegrity structure using Eqs. �6�, one must first set
the external forces to zero to obtain the following set of equations

C�̂�p�CTp = 0 �7�

Solving the equilibrium equations with the forces equal to zero
guarantees that the structure has adequate self-stress to keep its
structural integrity after the external forces have been removed.

Fig. 1 Three strut, four strut, and six strut tensegrity unit cell
structures

Journal of Applied Mechanics JULY 2007, Vol. 74 / 669

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



For a more detailed study of the equilibrium equations and the
feasibility conditions see Ref. �8�.

4 Geometric Construction of a Tensegrity Plate
The initial analysis into the design of a morphing tensegrity

wing examines a simple unit cell, specifically a four-strut pris-
matic structure �Fig. 1�. Based on this system, cells are connected
together to form a beam, with bar-to-bar connections between the
unit cells. Instead of recreating the connectivity matrix whenever
the number of cells in the beam is changed, a general connectivity
matrix has been developed for any number of cells in a beam
made of four-strut bar to bar tensegrities—commonly referred to
as a Type 2 tensegrity structure. The generalized connectivity ma-
trix for a Type 2 beam composed of four strut unit cells can be
found in Ref. �8�. A cellular plate structure is a structure com-
posed of many unit cells connected together that extend in two
different directions. Plate structures can have many different plan-
form shapes defined by the configuration vector �Fig. 2�. If the
tensegrity plate in composed of four strut unit cells with bar-to-bar
connections the whole structure is considered a Type 4 structure
since some nodal points have four struts connecting to them. To
achieve the type of bar-to-bar connections described, the ratio of
the radii of the bottom of the unit cell structure to the top of the
unit cell structure must be equal to the square root of two. In order
to give the structure a desired level of prestress and to solve for
the initial manufacturing lengths of the symmetric unit cell, a
simple force balance can be employed and is outlined in Ref. �9�.

5 Actuation Mechanism
Based upon the VWM, a technique has been developed to cal-

culate the overall topology of a tensegrity structure that has the
ability to actuate strings and/or bars in an asymmetric reconfigu-
ration. In this method, the manufacturing length becomes the ac-
tuation variable, so that, for example, a prescribed actuation strain
of 20% is defined as a change in the manufacturing length of 20%.
It should be pointed out that the final equilibrium length of the
cable—after actuation—will not be exactly 20% different from
the initial equilibrium length, due to second-order effects.

6 Optimization
The VWM is of great use in determining the global displace-

ment field of a tensegrity structure under external loads with the
actuation of individual members. By using the VWM as the foun-
dation for the analysis, a more useful design method has been
developed. Up to this point the question asked has been; what is
the displacement field due to the actuation of an individual mem-
ber? Instead, the question that is addressed by the following opti-
mization routine is the inverse; which actuators are necessary to
reach a given displacement field? To answer this question a direct
search method known as patternsearch in Matlab is utilized. This

method generates a mesh around an initial point, and the algo-
rithm tests each point for a better functional value than the initial
point �Fig. 3�. Once a better value is achieved a mesh is generated
around that point and the process repeats itself until the optimiza-
tion function value has converged to a minimum. The variables
for the optimization routine are the manufacturing lengths of the
cables or struts, whereas the optimization function depends on the
location of the nodal points.

The manta ray is the inspiration for designing a highly deform-
able morphing wing. However, data on the manta ray are rare
since they are not easily kept in captivity. An alternative is to
study the cownose ray, which is of the same family as the manta
ray. The deflections of a ray’s wing, as a function of time, is given
in Fig. 4 �10�. Although the flapping motion of the cownose ray is
asymmetric, these data present a good foundation for an optimi-
zation objective function.

The objective function is the difference between the nodal
points of the top of the structure and the shape of the cownose
ray’s deflected wing. To obtain an equation for the shape of the
cownose ray’s wing an exponential curve was fit to the ray data.
The following equation describes the upstroke of the ray

z = e0.1494x − 1 �8�

It has an R2 value equal to 0.9901. To make this equation useful
for a variety of structures of all different lengths and aspect ratios
this curve must be scaled up or down compared to the length of
the cownose ray’s wing, which is approximately 23 cm. First a
size ratio, S, comparing the spanwise length of the structure to the
spanwise length of the cownose ray is defined

Fig. 2 The configuration vector describes the structural layout
of a plate tensegrity structure composed of unit cells. Each
square represents a unit cell.

Fig. 3 Flow diagram of patternsearch optimization

Fig. 4 Cownose ray wing curvature during a flapping cycle at
different time steps. 10/30 s is the upward extreme in a normal
forward propelling flapping cycle.
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S =
Lstruct

Lray
�9�

A deflection ratio, D, is empirically found to be 0.6785. This ratio
is measured directly from the cownose ray data. It compares the x
location of the tip of the deflected wing to the x location of tip of
the flat wing. This ratio gives an approximate trajectory from the
flat shape to the deflected shape

D =
xdef

xflat
�10�

This allows the displacement equation to be in terms of the x
locations of the initial or flat shape and not the deflected shape. By
applying the S and D ratios, the curve is scaled to the size of the
structure and its x values are in terms of the flat shape. Finally, the
curve shifts upward to account for the initial height of the top
nodes. When all of these adjustments are made to the shape equa-
tion, the following is obtained for an upstroke and downstroke,
respectively

z = Se0.1494�D/S�x − S + z0 �11�

z = − Se0.1494�D/S�x + S + z0 �12�
Using Eqs. �11� and �12� part of the objective function is obtained.
The other two parts come from the difference between the y val-
ues of the nodes and their initial y states and the x values of the
top nodes and the matching deflected x values obtained from the
deflection ratio. Thus the objective function is the following for a
downstroke

1

4

i=1

ntop

�xi − Dxi,flat� +
1

4

i=1

n

�yi − yi,0�

+
1

2

i=1

ntop

�zi + Se0.1494�D/S�xi,flat − Si − zi,0� �13�

The z terms of the function must be weighted more than the y
terms so that the optimization does not want to converge to the
initial shape—this happens because there are more y errors being
computed than z errors. Also note that S is in both scalar and
vector form, where the vector form is the scalar value multiplied
by a ones vector, i.e., S*�1 ,1 ,1 . . .1�T.

To extend the usefulness of the new optimization method, plate
structures have also been studied. For a simple example a three
cell by three cell plate structure has been examined. This Type 4

plate structure consisting of 132 members and 40 nodes is actu-
ated into a twisted shape rather than a downward or upward de-
flection. In order to achieve a twist in the plate, the nodes on the
tip of the plate are matched up to a certain degree of twist. The
minimization function for the tip nodes is as follows

fmin =
1

9

i=1

n

�xi − xi,0� +
4

9

i

ntip

�yi − ygoal� +
4

9

i

ntip

�zi − zgoal�

ygoal = yi,0 cos �

zgoal = yi,0 sin � �14�

where xi,0 and yi,0 are initial x and y nodal point positions. The
summation from i to ntip implies summation over only the tip
nodal points and the weights on each summation are somewhat
arbitrary, but these values were given to reflect the relative impor-
tance of each goal. The angle � is the prescribed or desired twist
angle of the plate.

Either the deflection scenario or the twisting scenario can be
cast into the following nonlinear optimization problem:

Given

min
Lm

ptarget,C,Lm,E,A,us,uc,lc

fmin = 
 �p − ptarget�

such that

C�̂CTp = 0

�̂p = �̂p0

Lm,struts = us

lc � Lm,cables � uc �15�

where

us = Lm,struts lc = �̂Lm,cables uc = �̂Lm,cables

In this form-finding problem, � is a vector of zeros and ones
constraining certain nodal points to be fixed to their initial values;
� is a vector of values between zero and one; and � is a vector of
values between one and infinity. For most of the cases studied in
this paper �=0.8*ones�ncables ,1� and �=1*ones�ncables ,1�. If a
subset of strings is to be constrained from actuating, the �’s cor-
responding to the subset can be set to zero that constrains the
manufacturing lengths of the strings to stay at their initial values.

Fig. 5 61% downward deflection of a seven cell beam due to
20% contraction of the spanwise bottom cables

Fig. 6 Graph showing increased deflection capabilities of a
beam as a function of number of cells and length to height ratio
of the individual cell
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Results for the optimization of beams and plates to achieve
deflection and twisting requirements will be presented in the fol-
lowing section.

7 Results
The VWM has been used to determine the global deflection of

tensegrity beams and plates when individual cables are theoreti-
cally actuated. Results from the optimization scheme, developed
to determine the optimal locations and contraction amounts for
actuating cables, to obtain a desired displacement field, are also
presented.

7.1 Beam Structures. For the multiple cell beam case, a
seven cell beam was developed that consists of periodic four strut
prismatic unit cells connected together bar to bar. This type of

structure—based on bar-to-bar connections—is classified as a
Type 2 structure. The generalized connectivity matrix was utilized
to generate this beam. Three nodes are constrained at a wall such
that the connected cells form a cantilever beam configuration, as
shown in Fig. 5. There are no external forces acting on the struc-
ture and the bottom spanwise cables are contracted 20% each.
This causes an overall downward tip deflection of 61% of the span
length compared to 55% for the cownose ray, showing that this
structure is capable of achieving the biological displacement field
to a first-order approximation. One thing to note is that a twisting
asymmetry can be seen in the final structural shape. A question
that must be addressed is whether these asymmetries will be of
importance in developing an actual wing. It can be seen from the
seven cell beam structure that the twisting is not large, but it could
have a significant effect on the fluid–structure interaction and may
necessitate the need to be compensated for through additional ac-
tuation. Moreover, this asymmetry highlights the need for an op-

Fig. 7 34% downward deflection of a seven cell elliptical plate
due to 20% contraction of the bottom spanwise cables

Fig. 8 63% downward and 60% upward deflection of a 19 cell
manta ray shaped wing due to 20% contraction of the bottom
spanwise cables and 20% contraction of the top cables,
respectively

Fig. 9 „a… Optimal upward deflection of the unconstrained
three cell beam; and „b… comparison of the top surface of the
structure to the desired shape. With more cells or more allowed
actuation strain the desired shape can be easily reached.
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timization method that can determine which actuators to activate
in order to minimize the asymmetries in the structure, while
reaching the deflection goal.

Beam structures from one to seven cells in length have been
studied and the tip deflection resulting from a 20% contraction of
the spanwise cables have been compiled for given length to height
ratios of the unit cells �Fig. 6�. This shows that the addition of
cells to the span will give a nonlinear increase in the maximum
deflection possible for a fixed amount of contraction. Since the
percent deflection is defined as the difference between the de-
flected tip nodal point and the initial tip nodal point the amount of
percent deflection is nonlinear because the structure begins to curl
in on itself. This result bodes well for future work on designing
tensegrity wings, as the amount of actuation needed to achieve a
given deflection decreases with increasing cells. Deformability is
defined as the amount of tip deflection possible for a given
amount of actuation. This can also be controlled by varying the
amount of prestress in the structure or by varying the length to
height ratio of the beam �Fig. 6�.

7.2 Plate Structures. In order to create a morphing structure
that has a planform resembling a ray’s wing, the beam tensegrity
structures must extend outward in the y direction as well as the x
direction, forming a plate tensegrity structure. This structure can
be thought of as a series of beam structures connected together. To
construct a plate tensegrity structure, composed of individual four-
strut unit cells with bar-to-bar connections, the generalized con-
nectivity matrix for a beam structure that was previously pre-
sented can be used. However, the connections between the beams
must be taken into account to construct the correct connectivity
matrix. To characterize the configuration of the structure a con-
figuration vector is prescribed, an example of which can be seen
in Fig. 2. The configuration vector can be used to construct the
full connectivity matrix of the plate. This is done by creating the
connectivity matrix for each element of the subvector that repre-
sents a beam structure, and then compiling all of the beam con-
nectivity matrices with the added connections between beams.
The structure can then be analyzed using Eq. �7�.

Two wing configurations have been studied for their actuation
capabilities. The first wing configuration �Fig. 7� has an elliptical
planform shape with seven four strut unit cells connected together

with bar-to-bar connections, classified as a Type 4 tensegrity
structure. This planform shape has a configuration vector of
�2 3 2 �T. To determine the actuation potential of the structure,
the bottom cables are contracted by the standard amount of 20%
causing a 34% deflection in the–z direction.

The second wing configuration �Fig. 8� has a planform shape of
the cownose ray with 19 four strut cells with bar-to-bar connec-
tions, which consists of 279 members and is classified as a Type 4
tensegrity structure. This planform shape has a configuration vec-
tor of �1 2 4 6 3 2 1 �T. In this example the bottom cables
are contracted by 20% causing a 63% downward deflection and
the top cables are also actuated by 20% causing a 60% upward
deflection.

The results of this analysis demonstrate the potential for these
structures to mimic the kinematics of the cownose ray. However,
more needs to be done to accurately mimic the biological dis-
placement field. Moreover, if the manufacturing of one of these
structures were to be made practical in terms of power consump-
tion and cost, the structure should be designed with a minimized

Table 1 Errors between structural nodal points and biological
data.

Average X
error
�%�

Average Y
error
�%�

Average Z
error
�%�

Weighted
Average error

�%�

Upward
unconstrained

6.26 1.11 1.06 2.11

Downward
unconstrained

N/Aa 0.75 0.29 0.4

Upward
constrained

6.77 1.09 1.28 2.34

Downward
constrained

N/Aa 1.66 1.06 1.21

Designer’s
choice up

6.05 1.33 1.54 2.4

Designer’s
choice down

N/Aa 6.65 2.47 3.52

aN/A	not available.

Fig. 10 Contraction amounts of individual cables in unit cell determined by the optimization scheme for upward deflection
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number of actuation elements. To reach the biological displace-
ment field and minimize the number of actuators, the optimization
scheme described in Sec. 6 was developed.

7.3 Optimization of Deflected Beams. Using the minimiza-
tion function described in Eq. �13� cantilever beams, constructed
from up to four four-strut unit cells connected together, have been
studied. The unit cells are connected bar-to-bar forming a Type 2
tensegrity structure. The maximum allowed contraction percent-
age is set to 20% of the manufacturing lengths of specified mem-
bers. This new optimization design tool determines which actuat-
ing cables are required to contract and by how much, in order to
reach a desired shape or displacement field, subject to predefined
constraints. Four distinct cases have been studied. The minimiza-

tion function for the four optimization cases is strongly weighted
to ensure the smallest error occurs for the vertical deflections. As
the number of cells in the beam is increased, the structure’s ability
to achieve and resolve the desired shape strengthens—i.e., the
errors get smaller as the number of cells increase. This is an ex-
pected consequence as the number of degrees of freedom also
increases, allowing for finer shape changes.

The first shape optimization case is an upward deflection where
the top nodal points of a structure are matched to the cownose
deflected shape and the design space is unconstrained, meaning
that all of the cables are possible actuators. The unconstrained
problem reaches small minimization functional values, i.e., with
all cables being potential actuators; the shape of the structure will
be close to the desired shape. The actuation results for a three cell
cantilever beam can be seen in Fig. 9. The unconstrained case
gives excellent agreement to the cownose data with only three
cells connected together with the errors falling to less than 2% in
the z direction �Table 1�. The greatest source of error is in the x
direction which can be reduced by allowing for larger actuation
strains than 20% or by increasing the amount of cells in the span-
wise direction. An example of the contraction percentages of the
cables for the unconstrained case of a single cell beam are given
in Fig. 10, for an upward deflection.

For the second case study, the deflected shape of the top nodes
of the structure is optimized to achieve the downward deflected
shape of the cownose ray, given an unconstrained design space.
Figure 11 shows the deflected shape of a three cell beam. The
unconstrained problem produces some interesting results in terms
of which cables are actuated. As can be seen in Fig. 11, several of
the cables connecting the top and bottom layers of the structure
are actuated. This is to be expected due to the fact that it is the top
surface of the structure that is being matched to the downward
deflection field. Again, there is excellent agreement in the uncon-
strained case with the cownose data �Table 1�, except in the x
direction. As an example of the contraction percentages the un-
constrained case is shown for a single cell beam in Fig. 12, per-
forming a downward deflection.

The x direction error is listed in Table 1 as not applicable be-
cause the error between the desired shape and the structural shape
cannot be compared in the x direction. This inconsistency arises
because the top surface of the structure is matched to the desired
shape, while the structure is deflecting downward. In this situation
the length of the desired shape curve is significantly shorter than
the length of the top surface of the structure leading to a situation
where the structure can never reach the desired shape. Since the z
direction is the preferential direction in the minimization function
the optimization obtains results where the z direction error was
very small and the x direction error was very large. If one where
to prescribe the x direction as the preferential direction the opti-
mization would obtain results with a small x direction error and a
large z direction error. One way to achieve small errors in both the
x and z directions would be to scale up the size of the desired
shape, however this is not consistent with the cownose ray data

Fig. 11 „a… Optimal downward deflection of the unconstrained
three cell beam; and „b… comparison of the top surface of the
structure to the desired shape. Since the length of the top of
the structure to significantly larger than the length the
cownose ray wing in a downward deflection, the structure can-
not achieve the same deflection. This accounts for the large
error in the x direction.

Fig. 12 Contraction amounts of individual cables in unit cell
determined by the optimization scheme for downward
deflection
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set. The best way to achieve small error in both directions is to
match the bottom surface of the structure to the desired shape in a
downward deflection. This relieves the structure of the physical
constraint presented in the top surface optimization for a down-
ward deflection.

From the first and second cases the unconstrained problem is
shown to be an excellent starting point for determining which sets
of actuators are the dominant actuators for a given shape change
and even in some cases the unconstrained design space may prove
feasible in terms of manufacturability. However, the uncon-
strained problem typically is not practical since the optimization
produces a structure with a large number of active members, mak-
ing it difficult to build and more expensive to operate. But a
constrained optimization case can be used that limits the potential
actuators to a certain subset of the members, i.e., the dominant
active members from the unconstrained case. The third and fourth
cases explore the constrained problem for the upward and down-
ward deflections.

The third shape optimization case is an upward deflection

where the top nodal points of the structure are matched to the
cownose deflected shape and the design space is constrained to the
top cables as potential actuators. The actuation results for a three
cell cantilever beam can be seen in Fig. 13. For the constrained
case the error between the desired shape and the optimized shape
increases slightly over the unconstrained problem, but still gives
very good agreement with the biological data �Table 1�.

The fourth case studied optimizes the deflected shape of the top
nodes of the structure to the downward deflected shape of the
cownose ray with a potential actuator space constrained to only
the bottom cables. Figure 14 shows the deflected shape of a three
cell beam. There is excellent agreement in the constrained case
with the cownose data �Table 1� and the errors are only slightly
higher than the unconstrained case.

Both the unconstrained and the constrained cases reach much
closer to the actual cownose shape than a designer’s choice of the
actuator locations and amounts �Table 1�. In order to evaluate the
overall performance of all design choices a weighted average er-
ror has been calculated. This error takes into account the weights
of the minimization function, which gives the z direction the

Fig. 13 „a… Optimal upward deflection of the constrained three
cell beam; and „b… comparison of the top surface of the struc-
ture to the desired shape

Fig. 14 „a… Optimal downward deflection of the constrained
three cell beam; and „b… comparison of the top surface of the
structure to the desired shape

Journal of Applied Mechanics JULY 2007, Vol. 74 / 675

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



strongest influence. Table 1 highlights the two main reasons for
using this optimization method as a design tool: �1� when design-
ing a tensegrity structure to reach a specific shape it is not intui-
tive which members should be actuators and �2� when the active
members are chosen it is not intuitive by how much they should
be actuated.

7.4 Optimization of a Twisting Plate. The minimization
function presented in Eq. �14� is used to optimize the end nodes of
a three cell by three cell plate structure to achieve a prescribed
twist angle of 15 deg. The results of this optimization are shown
in Fig. 15. The dotted lines represent the active cables, the solid
thin lines are the passive cables and the solid thick lines are the
struts. The average errors in the x, y, and z directions are 0.67%,
1.36%, and 1.46%, giving an excellent agreement with the desired
shape. This example has shown the robustness of the optimization
design tool developed in this paper. The method can handle any
structural compositions as well as any desired shape by determin-
ing a new minimization function for each shape. Material property
constraints may also be added once the materials are chosen.

8 Conclusions
This paper applies the virtual work method to the problem of

form finding of tensegrity structures. By actuating individual ele-
ments using the virtual work method, deformation of single and
multiple cell beams were studied. A new optimization design tool
was presented which can determine which elements in a structure
need to be actuated and by how much in order to reach a desired
shape. In particular it was shown that a tensegrity beam structure
can match very closely to the biological displacement of the
cownose ray with only a few cells connected together. The opti-
mization tool is a necessary step in the design of a morphing wing
when the shape of the activated wing must be close to a desired
displacement field. As the desired displacement field becomes
more complex this optimization method becomes more important.
However, any intuitive approach can be improved upon by using
this design tool.
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Nomenclature
p 	 nodal point vector
x 	 x coordinate vector of nodal points
y 	 y coordinate vector of nodal points
z 	 z coordinate vector of nodal points

x0 	 initial x positions
y0 	 initial y positions
z0 	 initial z positions

fext 	 external force at a node
� 	 force density in a member

�1 	 one-dimensional force density vector
� 	 three-dimensional force density vector
f 	 internal force in a member
L 	 equilibrium length

Lm 	 unstressed manufacturing length
E 	 Young’s modulus
A 	 cross-sectional area

nn 	 number of nodes
ne 	 number of elements

C1 	 one dimensional connectivity matrix
C 	 three-dimensional connectivity matrix

Ccables 	 full cable connectivity matrix
Cstruts 	 full strut connectivity matrix
Lstruct 	 characteristic length of the structure

Lray 	 characteristic length of the cownose ray wing
S 	 size ratio
D 	 deflection ratio

xdef 	 deflected x coordinates of a structure
xflat 	 flat x coordinate of a structure
ntop 	 number of top nodes
ntip 	 number of tip nodes
fmin 	 minimization function

� 	 desired angle of twist
ptarget 	 desired nodal point positions

us 	 upper bound of the struts
uc 	 upper bound of the cables
lc 	 lower bound of the cables
� 	 constraint parameter
� 	 cable lower bound parameter
� 	 cable upper bound parameter
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Transient Response of Tapered
Elastic Bars
Exact solutions are obtained for a model of the longitudinal displacement along an
elastic tapered bar due to a force applied at its blunt end. A formula for velocity ampli-
fication is given; it specifies the velocity of the pointed end of the bar shortly after it feels
the influence of the force. For a bar with an exponentially decreasing cross-sectional
area, the velocity is magnified by twice an exponential function of length. This result has
applications in the design of piezoelectric drills. In addition, we discuss the differences
between the motions of rigid and elastic bars during the transient before one complete
reflection of the wave induced by a force applied to an end of the bar. In this regime, force
is proportional to velocity for elastic bars with constant cross-sectional areas. While the
force–velocity relationship is more complicated for tapered elastic bars, their exact re-
lationship is determined. �DOI: 10.1115/1.2424719�

1 Introduction
While the motion of a point particle under the influence of a

mechanical force is simply described by Newton’s laws, the mo-
tion of an extended body is complicated by the propagation of that
influence throughout the body from the position where the force is
applied. In many cases, the propagation speed of the motion
within the body is so fast �in comparison to the application of the
external force� that it is regarded as being instantaneous and the
body is regarded as being rigid. There are, however, situations
where understanding the transient response of an object, following
the application of a force, is of primary interest. An excellent
example is the response of piezoelectric drills, which are used in
intracytoplasmic sperm injection �see Refs. �1–5��. In this appli-
cation, forces of very short duration are generated by a piezoelec-
tric actuator that are used to produce desired motions of the tip of
a micropipette. Fast mechanical motion of the pipette tip, which
can be induced by such an actuator, greatly facilitates the injection
process. Since the duration of the force in this application is com-
parable to or even shorter than the time it takes for the wave to
propagate from the position of the actuator to the tip of the pi-
pette, the compliance of the structure from the force actuator to
the pipette tip should be considered in the design of piezo-drill
systems.

The design process for compliant materials must take into ac-
count the distribution of the compliance. Although this compli-
cates the design analysis, it offers additional options to the de-
signer. While a tapered bar can be used to amplify pressure as in
a diamond anvil �6�, an elastic tapered bar can be used to amplify
velocity as in materials testing �7�.

We will discuss the amplification of velocity with an eye to-
ward the design of piezoelectric drills that might be used in cell
biology �8,9� and needle biopsy devices that are used in cancer
diagnosis, where recent research �for example, see Ref. �10�� has
shown that the cutting speed of the needle strongly affects the
successful penetration of a tumor. In fact, solid tumors require
cutting speeds that may not be achievable with existing technol-
ogy.

We model our structure by a bar with varying cross-sectional
area and consider the effect of an axial force that is applied to one
end of the bar, called the blunt end. The other end of the bar is
called its point. What is the relationship between the force and the
motion of the point of a compliant bar? How does the varying
cross-sectional area affect the force–motion relationship? The an-

swers to both questions are very simple for a rigid bar: the whole
bar has identical acceleration that equals the applied force divided
by the total mass of the bar, which is proportional to the length for
a bar with a constant cross-sectional area.

Velocity amplification occurs when a longitudinal force is ap-
plied to the blunt end of an elastic tapered bar, which we prefer to
view as a drill. The purpose of this paper is to determine the drill
point velocity in the case where the drill’s cross-sectional area is
an exponential function of the longitudinal coordinate. More pre-
cisely, we consider the longitudinal displacement u�x , t� of an
elastic drill with density �, cross-sectional area A�x�, Young’s
modulus E, and length l, where the spatial coordinate x resides on
the interval �0, l�. The input displacement at x=0 is given by a
function of time f�t� and the drill point is free to move from its
initial position at x= l. The longitudinal displacement is modeled
by the partial differential equation �PDE�

�A�x�utt = E�A�x�ux�x �1�

on the domain t�0 and 0�x� l with boundary and initial con-
ditions

u�0,t� = f�t�, ux�l,t� = 0, u�x,0� = 0, ut�x,0� = 0

Compatibility of the initial and boundary conditions requires
the input displacement to satisfy f�0�= f��0�=0. This model can
be used to determine the response of the bar to a force applied at
x=0, which is modeled �using Hooke’s law� by prescribing the
strain

ux�0,t� = −
F�t�

EA�0�

where F is the force required to cause the input displacement. The
model Eq. �1� is physically realistic for the propagation of small
amplitude waves in straight bars that do not taper too fast and are
thin relative to the wave length of the sound �11�.

The differential equation in system �1� has a long history that
began in the 17th century �11�. The work of Rayleigh and Webster
in the 19th century includes the description of tapered bodies,
where the physical application is the propagation of sound. This
direction of research continues with the description of loud speak-
ers and other areas of acoustics. The history of the equation, as it
relates to tapered drills, goes back to the 1945 patent application
of W. P. Mason, where a tapered bar is proposed to magnify ve-
locity using a piezoelectric transducer �12�. Most of the subse-
quent research �see Refs. �11,13� for a review up to 1966� starts
from the hypothesis of sinusoidal motion; that is, the displacement
can be expressed in the form
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u�x,t� = v�x�ei�t �2�

so that v is the amplitude and � the circular frequency of vibra-
tion. This form of the solution is appropriate for power ultrason-
ics, where one of the main problems is to determine the resonant
frequencies and amplification characteristics of the oscillating ta-
pered bar �see Refs. �14�, p. 115, �15�, Chap. 3, and �16�, Chaps.
6–7 for general discussions of longitudinal waves, and Refs. �17�,
pp. 223–240 for sound waves in loudspeaker horns�. With this
assumption and a rescaling, the partial differential Eq. �1� leads to
the ordinary differential equation �ODE�

U� +
A��x�
A�x�

U� + �U = 0 �3�

where U is the scaled amplitude and � is a constant. This equa-
tion cannot be solved explicitly in general; but, the complete so-
lution can be determined if one solution is known �11�. The spe-
cialization to the ODE Eq. �3� is useful for understanding the
vibrational modes of the tapered bar. Also, this model predicts
velocity amplification. For example, in case the cross-sectional
area is A�x�=�e�x and ��0, the ODE is an anti-damped har-
monic oscillator. So, U grows as a function of position along the
bar. On the other hand, this approach is not adequate to model the
transient motions of tapered bars of interest here; for example, the
boundary conditions imposed in the PDE system �1� are incom-
patible with Eq. �2�.

The flexural vibrations of tapered bars have not received as
much attention. In most applications in ultrasonics, flexural vibra-
tions are avoided to concentrate ultrasonic energy or amplify ve-
locity at the tip of a tapered bar in the longitudinal direction. On
the other hand, the analysis of flexural vibrations is important and
recent results are available to model and analyze these motions
�18�.

Ultrasonic drills are widely used in many different industrial
and medical applications. Optimal design of these devices for spe-
cialized applications is a topic of current interest. Most applica-
tions employ tapered bar devices that operate in the oscillating
mode �see, for example, Ref. �19� for a recent design used in
drilling and coring in rock and Ref. �20� for a general discussion
of ultrasound applications�. But, in some important applications
�in particular, the piezoelectric drills used in intracytoplasmic
sperm injection�, the device operates in the transient mode. A
fundamental design problem—the motivation for the results pre-
sented here—is to determine the cross-sectional area of an elastic
bar as a function of the axial coordinate that, for a given input
displacement, maximizes the drill-point velocity ut�l , t� after the
tip first begins to move.

The most important practical considerations are the relation-
ships between the input displacement, the input force, the behav-
ior of the displacement of the point of the bar u�l , t�, and the
system parameters. We establish these relationships—for uniform
and exponentially tapered bars—by solving the boundary-initial
value problem for the linear PDE Eq. �1�.

In Sec. 2, we present the special case of a bar with constant
cross section and we contrast these well known results with the
behavior of a rigid bar. In Sec. 3, we consider infinite tapered bars
and review the standard approach in the literature involving har-
monic traveling waves. In Sec. 4, we present our results for a
tapered bar whose cross-sectional area is an exponential function
of its axial position. Our method gives the expected geometric
amplification factor of the input velocity by the tapered bar, and
also establishes the relationship between the input force and input
displacement in the transient response. We analyze the equation of
motion using a variant of the method introduced by Ffowcs Wil-
lams and Hawkings in their work on sound generation by the
arbitrary motion of surfaces �see Refs. �21� or �22�, Sec. 9.4�. In
Sec. 5, we solve the PDE �1� with a prescribed input force and
show that the solution is compatible with our results for pre-

scribed input displacements. This analysis can be used to select
actuators based on the desired motion at the tip of the bar. Dis-
cussions and conclusions are given in Sec. 6.

2 Constant Cross-Sectional Area
We will obtain the well-known exact solution of our model Eq.

�1�, with a specified input displacement, for the special case where
the cross-sectional area is given by

A�x� = �e�x �4�

with �=0; that is, the cross-sectional area is constant. The drill
point velocity formula Eq. �36� is easy to verify for this case,
which serves to illustrate some of our methods. In addition, we
will relate our solution of the model equation to the corresponding
input force. Finally, we will reconcile the motion of the elastic bar
with the motion of the corresponding rigid body in the limit as
Young’s modulus grows without bound.

2.1 Prescribed Displacement. For cª�E /�, the model PDE
Eq. �1� reduces to the scalar wave equation

utt − c2uxx = 0, t � 0, 0 � x � l

with boundary and initial conditions

u�0,t� = f�t�, ux�l,t� = 0, u�x,0� = 0, ut�x,0� = 0

We extend the time domain to the whole real line by setting
f�t�=0 for t�0. D’Alembert’s solution

u�x,t� = a�t − x/c� + b�t + x/c� �5�

satisfies the PDE for all t and 0�x� l. By applying the boundary
values, the functions a and b can be determined explicitly. In fact,
a useful representation of the solution �satisfying the initial and
boundary conditions� is given by

u�x,t� = f�t − x/c� + �
n=1

	

�− 1�n�f�t − x/c − 2nl/c�

− f�t + x/c − 2nl/c�� �6�

�see Ref. �23�, pp. 508–510�. We note that for fixed x and t, the
sum contains only a finite number of nonzero terms, since the
arguments of f will be negative for sufficiently large n and f�t�
=0 for t�0.

Evaluating Eq. �6� at x= l yields a representation for the dis-
placement of the drill point

u�l,t� = 2�
n=0

	

�− 1�nf�t − �2n + 1�l/c�

For t�2l /c, this expression reduces to

u�l,t� = 2f�t − l/c� �7�

As we will show, the factor of two in this formula �due to the
reflection of the wave at the point of the bar� is present for tapered
bars �see the general drill point velocity formula Eq. �36��.

2.2 Prescribed Displacement Versus Force. We relate the
prescribed displacement of the previous section, f�t�, to F�t�, the
force required to cause the displacement.

By Hooke’s law

−
F�t�

�
= Eux�0,t� �8�

where the negative sign indicates that the stress is compressive
when the force F�t� is positive and �=A�0� �see Eq. �4��.

Differentiating Eq. �6� with respect to x, evaluating the strain
ux�x , t� at x=0, and applying Eq. �8� gives
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F�t� =
E�

c
f��t� +

2E�

c �
n=1

	

�− 1�nf��t − 2nl/c� �9�

Starting with t�2l /c and “bootstrapping” to larger t, Eq. �9�
may be solved for f��t� �i.e., ut�0, t�� to get �for all t�

ut�0,t� =
c

E�
F�t� +

2c

E��
n=1

	

F�t − 2nl/c� �10�

For t�2l /c, this equation reduces to

ut�0,t� =
c

E�
F�t� �11�

that is, before the wave is reflected back to x=0, the applied force
at x=0 is proportional to the velocity at x=0. This is in stark
contrast to a rigid bar, where by Newton’s 2nd Law, the force is
proportional to the acceleration. These qualitatively different be-
haviors are reconciled in the next subsection.

2.3 Elastic Versus Rigid Bars. In this section, we show that
the response of an elastic uniform bar to a constant force agrees
with that of a rigid bar in the limit as Young’s modulus �or,
equivalently, the wave speed c� approaches infinity.

Let F�t�=FH�t� be the force applied at x=0, where F is a
constant function and H is the Heaviside function. In view of Eq.
�10�, the velocity at x=0 is given by

ut�0,t� =
F

�c�
�H�t� + 2�

n=1

	

H�t − 2nl/c�� �12�

where we have used the identity E=�c2. The graph of ut�0, t�
versus t is simply a step function, where the time length of each
step is 2l /c, and the height change of each step is 2F / ��c��, with
the first step starting at the height F / ��c��. Thus, an elastic bar
under a constant force “accelerates” in a discrete way, moving at
constant velocity over a time interval of length 2l /c before its
speed is suddenly increased by 2F / ��c��. This motion is caused
by the pressure wave reflecting back and forth within the bar. In
the limit as Young’s modulus �or equivalently the wave speed c�
approaches infinity, the motion of the elastic bar approaches the
motion of the corresponding rigid bar. To prove this result, for t

0 we rewrite Eq. �12� �keeping the step function graph in mind�
as

ut�0,t� = � ct

2l
� 2F

�c�
+

F
�c�

where �� indicates the integer part �to count which step occurs at
time t�. Thus

V�t� ª lim
c→	

ut�0,t� =
Ft

��l
=

F
M

t

where M is the mass of the bar. Differentiating with respect to
time gives the acceleration

V��t� =
F
M

in agreement with Newton’s 2nd Law applied to a rigid bar �24�.

3 Infinite Tapered Bars
Before extending the previous analysis of finite uniform bars to

finite tapered bars, we review �in this brief section� some known
results for a harmonic wave traveling on an infinite bar.

As before, we define cª�E /�. While c is the wave speed for a
bar with constant cross section �where our model equation reduces
to the classical wave equation and hence is nondispersive�, we

note that in what follows c is simply a parameter. Indeed, for a
tapered bar �where our model equation allows dispersion�, wave
speed depends on frequency.

Consider a tapered bar with infinite length �in both the positive
and negative x directions� whose cross-sectional area is given by
the exponential A�x�=�e�x. In this case, the model PDE Eq. �1�
�without its boundary conditions� reduces to the telegraph equa-
tion

utt − c2uxx − �c2ux = 0 �13�

After the change of variables u�x , t�=e−��x/2�v�x , t�, Eq. �13� is
recast as the Klein–Gordon equation

vtt − c2vxx +
�2c2

4
v = 0 �14�

which occurs in quantum mechanics and can also be used to
model the transverse motion of an elastically anchored string �see
Ref. �25�, p. 109�.

A harmonic traveling wave solution

v�x,t� = aei�kx−�t�

of the Klein–Gordon equation translates to a telegraph equation
solution of the form

u�x,t� = ae−��x/2�ei�kx−�t� �15�

both of which give the same dispersion relation

�2 = c2k2 +
�2c2

4

Note that k is real if and only if �
�c /2. For this reason, �c /2
is called the cutoff frequency. �The solution v�x , t� is no longer a
traveling wave if k is imaginary; indeed, in this case, the spatial
dependence is purely exponential rather than oscillatory and the
whole bar oscillates in time with frequency �.� The dispersion
relation also gives the phase velocity

cp ª
�

k
= c	1 −

�2c2

4�2 
−�1/2�

and the group velocity

cg ª
d�

dk
= c	1 −

�2c2

4�2 
�1/2�

Note that cp�c and cg�c, and both quantities approach c as �
approaches infinity. Also, cp approaches infinity and cg ap-
proaches 0 as � approaches �c /2. The group velocity cg��� can
be viewed as the speed of the envelope of a packet of harmonic
traveling waves with frequencies near � or as the mean velocity
of transport of energy �see Ref. �25�, p. 111�.

The displacement amplification that occurs in exponentially ta-
pered bars �for ��0�—in the regime of harmonic traveling
waves—is readily apparent from the solution Eq. �15�. Indeed,
comparing the particle displacements after the wave travels a dis-
tance l, we have the ratio

u�x + l,t + l/cp�
u�x,t�

= e−��l/2�

which is equal to the ratio of the diameter of the bar at x to the
diameter at x+ l. In particular, this amplification ratio is indepen-
dent of the frequency �. The same result is obtained for the par-
ticle velocity amplification by taking time derivatives. Mason ob-
tained this amplification ratio for a finite tapered bar of
exponential cross section for the particular frequency at which the
length of the bar is exactly half the wavelength �12�.

Unfortunately, as pointed out in the Sec. 1, the boundary con-
ditions for a finite bar subjected to an input displacement which is
“turned on” at t=0 are not compatible with the solution Eq. �15�.
A different approach is required to model the transient response.
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4 Finite Tapered Bars
In this section, we determine the drill point velocity for the

model PDE Eq. �1�, with prescribed input displacement, where the
cross-sectional area is given by the exponential A�x�=�e�x and
we relate the prescribed input displacement to the input force.

4.1 Prescribed Input Displacement. As before, we define c
ª

�E /� and again note that it is simply a parameter. Using the
exponential A, the model equation reduces to the telegraph equa-
tion boundary value problem �BVP�

utt − c2uxx − �c2ux = 0, 0 � x � l, t � 0

u�x,0� = ut�x,0� = 0, u�0,t� = f�t�, ux�l,t� = 0

After the change of variables u�x , t�=e−��x/2�v�x , t�, we have the
Klein–Gordon BVP

vtt − c2vxx +
�2c2

4
v = 0, 0 � x � l

v�x,0� = vt�x,0� = 0, v�0,t� = f�t�, vx�l,t� =
�

2
v�l,t�

where we assume f�t�=0 for t�0.
We apply a useful solution method with wide application �see

Refs. �21� or �22�, Section 9.4�. Let H denote the Heaviside func-
tion. After multiplying both sides of the Klein–Gordon equation
by the product H�x�H�l−x�, we have

	vtt − c2vxx +
�2c2

4
v
H�x�H�l − x� = 0

which holds on the whole real line. Note that

�vH�x�H�l − x��tt = vttH�x�H�l − x�

and

�vH�x�H�l − x��xx = vxxH�x�H�l − x� + vx�0,t���x� − vx�l,t���l − x�

+ v�0,t����x� + v�l,t����l − x�

Thus, on the whole real line, we get the PDE

wtt − c2wxx +
�2c2

4
w = h�x,t�, w�x,0� = wt�x,0� = 0 �16�

where w�x , t�=v�x , t�H�x�H�l−x� and

h�x,t� = − c2�vx�0,t���x� −
�

2
v�l,t���l − x� + f�t����x�

+ v�l,t����l − x��
We note that w=v for x� �0, l�.

The nonhomogeneous Klein–Gordon equation �16� has the
well-known solution, for t
0, given by

w�x,t� =
1

2c�0

t�
x−cs

x+cs

J0	�

2
�c2s2 − �x − ��2�
h��,t − s�d� ds

�17�

where J0 is the Bessel function defined by

J0�z� =
2


�

0

/2

cos�z sin ��d�

�see, for example, problem 2 on p. 135 in Ref. �26� and apply
Duhamel’s principle�.

For x� �0, l�, we then have

v�x,t� =
1

2
f	t −

x

c

 +

1

2
v	l,t −

l − x

c



+
�cx

2 �
0

t−x/c

J0��g�x,t − s��f�s�ds

+�
0

t−�l−x�/c ��c

4
J0�g�x − l,t − s��

+
�c�l − x�

2
J0��g�x − l,t − s��v�l,s�ds

−
c

2�
0

t−x/c

J0�g�x,t − s��vx�0,s�ds �18�

where

g�x,t� ª
�

2
�c2t2 − x2�

Assuming v is continuous at x= l, we have that

v�l,t� = f	t −
l

c

 + �lc�

0

t−l/c

J0��g�l,t − s��f�s�ds

+
�c

2 �
0

t

J0�g�0,t − s��v�l,s�ds

− c�
0

t−l/c

J0�g�l,t − s��vx�0,s�ds �19�

Assuming vx is continuous at x=0, we may differentiate Eq. �18�
with respect to x and set x=0 to obtain

vx�0,t� = −
1

c
f��t� +

1

c
vt�l,t − l/c� + �c�

0

t

J0��g�0,t − s��f�s�ds

+
�

2
v	l,t −

l

c

 + �c�

0

t−l/c �	�l

2
− 1
J0��g�l,t − s��

+ �l2J0��g�l,t − s��v�l,s�ds �20�

We have expressed vx�0, t� using known functions together with
v�l ,s� and vt�l ,s� for retarded times s� t− l /c. Thus, Eq. �19�
would express v�l , t� using known functions together with v�l ,s�
and vt�l ,s� for retarded times s� t− l /c if it were not for the un-
desirable third term. For this reason, we recast Eq. �19� in the
operator form

�I − K�v�l,t� = F�t�

where I is the identity operator, K is the operator given by

K��t� =
�c

2 �
0

t

J0�g�0,t − s����s�ds �21�

and

F�t� = f	t −
l

c

 + �lc�

0

t−l/c

J0��g�l,t − s��f�s�ds

− c�
0

t−l/c

J0�g�l,t − s��vx�0,s�ds

We note that F�t�=0 for t� l /c.
Consider t�2l /c. To determine F�t�, we need to know vx�0,s�

for s� l /c. But, by Eq. �20� for s� l /c, we have
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vx�0,s� = −
1

c
f��s� + �c�

0

s

J0��g�0,s − ���f���d�

Thus, for t�2l /c

F�t� = f	t −
l

c

 + �lc�

0

t−l/c

J0��g�l,t − s��f�s�ds

+�
0

t−l/c

J0�g�l,t − s��f��s�ds

− �c2�
0

t−l/c

J0�g�l,t − s���
0

s

J0��g�0,s − ���f���d� ds

�22�

For a more precise definition of the operator K, let T�0 and let
B denote the Banach space of functions that are bounded on �0,T�
with the sup norm � · � �i.e., for ��B, �� � =supt��0,T� ���t���. The
operator K is defined on B by Eq. �21�. We let � · �op be the corre-
sponding operator norm �i.e., �K�op=sup���B:���=1� �K���.

Formally, the inverse of the operator I−K is represented by the
series

�I − K�−1 = I + �
j=1

	

Kj

It can be shown that

�I + �
j=1

	

Kj�
op

� e���cT/2

i.e., the series is a bounded operator and thus converges.
Whenever F�B, we then have

v�l,t� = 	I + �
j=1

	

Kj
F�t� �23�

We note that for T�2l /c, we have F�B by Eq. �22�. By a te-
dious process of iteration, we can extend this result to as large a
value of T as is needed in the evaluation.

As noted before, for t� l /c, F�t�=0 and thus v�l , t�=0 and
u�l , t�=0. Hence the average speed of a “signal” sent from x=0 to
x= l can be no greater than c. In fact, c is the maximum speed of
transmission of a disturbance in any medium governed by a PDE
of the form c2uxx=utt+��u ,ux ,ut� �see Ref. �25�, pp. 110 and
224�.

Note that in the special case �=0, we have K=0 and thus
v�l , t�=F�t�. In this case, for t�2l /c, F�t� simplifies to

F�t� = f	t −
l

c

 +�

0

t−l/c

f��s�ds = 2f	t −
l

c



This agrees with the wave equation result, as it should, since for
�=0 the Klein–Gordon equation reduces to the wave equation.

To return to the original function u, we multiply Eq. �23� by the
factor e−��l/2� to obtain

u�l,t� = 	I + �
j=1

	

Kj
e−��l/2�F�t� �24�

where again F�t� is given by Eq. �22� for t�2l /c.
It can be shown �using integration by parts� that for each posi-

tive integer n

d

dt
�Kn���t� =

�c

2
��0��Kn−1J0	�c2t2

2

��t� + �Kn����t� �25�

In particular, since F�0�=0, we have

d

dt
�KnF��t� = �KnF���t�

Thus

ut�l,t� = 	I + �
j=1

	

Kj
e−��l/2�F��t� �26�

where, by differentiating Eq. �22� and integrating by parts �recall-
ing that f�0�=0�

F��t� = 2f�	t −
l

c

 + �c�

0

t−l/c

J0��g�l,t − s��f��s��l + c�t − s��ds

− �c2�
0

t−l/c

J0��g�0,t − l/c − s��f�s�ds − �2c4�
0

t−l/c

�t − s�

�J0��g�l,t − s���
0

s

J0��g�0,s − ���f���d�ds �27�

Note that Eq. �26� can also be obtained by noticing that both u and
ut must satisfy the model Eq. �1�.

To see how ut�l , t� changes from the simple wave equation case
��=0�, we will compute the derivative of ut�l , t� with respect to �
at �=0. Since the operator K depends on �, we do not use Eq.
�26�. Instead, we note that �d /d��F�t�=0 at �=0 by Eq. �22� and
differentiate

�I − K�u�l,t� = e−��l/2�F�t�

first with respect to � at �=0 and then again with respect to t to
obtain

� d

d�
ut�l,t��

�=0
= cf�t − l/c� − lf��t − l/c�

Suppose f is a pulse with support in �0,�� for some 0��
� l /c. Let Mªmaxt��0,��f�t�. There is some time, say t=�, when
f���− l /c��M /�. It follows that lf���− l /c��cf��− l /c�; hence

� d

d�
ut�l,���

�=0
� 0

In fact, since for �=0, we have ut�l , t�=2f��t− l /c�, the velocity
ut�l , t� is maximized when f��t− l /c� is maximized. Thus, if we
take � to be the time at which ut�l , t� is maximized, then we will
have

� d

d�
ut�l,���

�=0
� 0

In other words, decreasing � from 0 will increase the maximum
velocity of the drill point �at least near �=0�.

Returning to the case of arbitrary � and f , we wish to examine
the response ut�l , l /c�. Note that l /c is the time it would take a
signal traveling with speed c to go from x=0 to x= l. Recall that
for t� l /c, we have F��t�=0 by Eq. �27�; hence ut�l , t�=0 on this
time interval. For t= l /c, Eq. �27� gives F��l /c�=2f��0�. By Eq.
�21�, KnF��l /c�=0 for n
1. In fact, it can be easily seen that
KnF��l /c+��=O��n�. Thus Eq. �26� yields

ut	l,
l

c

 = 2e−��l/2�f��0� �28�

where ut and f� are right-hand derivatives. This equation implies
that decreasing � results in a larger response. Furthermore, it fol-
lows that the influence from the initial input travels with speed c,
even for nonzero � where dispersion may occur. This fact may be
reconciled with the results of Sec. 3 by noting that, for a super-
position of harmonic solutions of the form given in Eq. �15� to
satisfy the boundary conditions, terms of arbitrarily high frequen-
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cies � would be required, for which the group velocity would
approach c. Finally, we note that the velocity ut�l , l /c� can be
made arbitrarily large by adjusting the parameter �. Thus, without
further design constraints, no optimal shape exists. Of course, the
model �1� may not be valid for large ���.

The asymptotic behavior at �x , t�= �l , l /c� is given more pre-
cisely by

ut	l,
l

c
+ �
 = 2e−��l/2�� f��0� + �� f��0� +

�c

2
f��0�� + O��2�

�29�
Figure 1 depicts the velocity response at the blunt end, the

middle, and the point of two different tapered bar profiles, clearly
showing the velocity amplification. Note that the point velocity,
shortly after it begins moving, is much higher than the blunt end
velocity after it begins moving, but the duration of this velocity
amplification is short.

4.2 Displacement Versus Force. Recall that, for constant
cross-sectional area and t�2l /c, the velocity of the blunt end of
the bar is proportional to the applied force �see Eq. �11��. In this
section we discuss the velocity–force relationship for tapered bars
whose cross-sectional areas are given by an exponential function
of the length along the bar. The result is the same at the lowest
order of approximation. The correction term at the next highest
order is determined.

Using Hooke’s Law, we relate the force F�t� and the strain
ux�0, t� as follows

−
F�t�

�
= Eux�0,t� �30�

Recalling the change of variables

u�x,t� = e−��x/2�v�x,t�

and differentiating with respect to x, we find that

Fig. 1 The velocity response versus time of the elastic tapered bar with l=1 and c=8 „com-
puted using a finite difference scheme applied to the PDE „1……, with cross-sectional area A„x…
=e−4x in the top panel and A„x…=e−8x in the bottom panel, is depicted for the quadratic pre-
scribed input displacement u„0, t…= f„t…=2t2
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ux�x,t� = −
�

2
e−��x/2�v�x,t� + e−��x/2�vx�x,t�

By evaluation of this expression at x=0 and an application of the
boundary conditions, the strain is given by

ux�0,t� = −
�

2
f�t� + vx�0,t�

For t�2l /c, Eq. �20� implies that

vx�0,t� = −
1

c
f��t� + �c�

0

t

J0���

2
c2�t − s�2� f�s�ds

Hence, for t�2l /c

ux�0,t� = −
�

2
f�t� −

1

c
f��t� + �c�

0

t

J0���

2
c2�t − s�2� f�s�ds

Applying Hooke’s Law, in the form of Eq. �30�, we get

F�t� =
E��

2
f�t� +

E�

c
f��t� − E��c�

0

t

J0���

2
c2�t − s�2� f�s�ds

�31�

We note that the force F required to cause the displacement f
does not depend on the length of the bar, just as one would expect
in the transient response.

For �=0 in Eq. �31�, only the middle term survives; and we
recover the constant, cross-sectional area result: the input force is
proportional to velocity �in the transient regime�. For nonzero �,
this simple relationship is modified by the first and third terms.

To determine the effect of the modifying terms for small t, we
observe that the expansion of Eq. �31� about t=0 �recalling that
f�0�=0� is

F�t� =
E�

c
� f��0� + ��c

2
f��0� + f��0��t + ��c

2
f��0� + f��0�� t2

2


+ O�t3� �32�

In particular, the first-order term is independent of � �even if
f��0�=0�. Hence, for sufficiently small t, the tapered bar will be-

have approximately the same as the bar with constant cross-
sectional area, that is, the force is approximately proportional to
the velocity. Note that every term of the expansion Eq. �32� comes
from the first two terms in Eq. �31�. The third term in Eq. �31� is
of order O�t4�.

Figure 2 shows the computed force at the blunt ends of bars
with different cross-sectional area profiles. We also note that—as
we have shown �see Eq. �32��—the force is proportional to the
velocity for a short time interval; but, the geometry of the bar
influences this relationship as time increases.

5 Prescribed Force Boundary Data
In this section, we consider the prescribed force �F� boundary

condition at x=0 for the model Eq. �1�. Recall that the strain at
x=0 is modeled by

ux�0,t� = −
F�t�

EA�0�
where the negative sign indicates that a force acting in the positive
x direction will compress the drill, causing a negative strain. The
main result here is that the solution of the model equation agrees
with the computed force at x=0 obtained from the solution of the
model equation with prescribed input displacement. We will as-
sume as before that the cross-sectional area is given by A�x�
=�e�x.

5.1 Constant Cross-Sectional Area. In case the cross-
sectional area is constant; that is, �=0 and for cª�E /�, the
model PDE Eq. �1� reduces to the scalar wave equation

utt − c2uxx = 0, t � 0, 0 � x � l

with boundary and initial conditions

ux�0,t� = −
F�t�
E�

, ux�l,t� = 0, u�x,0� = 0, ut�x,0� = 0

Extending to all t by assuming F�t�=0 for t�0 and using the
D’Alembert solution Eq. �5� and the boundary conditions as in
Sec. 2.1, the derivatives of the functions a and b can be deter-

Fig. 2 The force „−�c2ux„0, t…… versus time „computed using a finite difference scheme applied
to the PDE „1…… at the blunt end of the elastic tapered bar „l=1, �=1, and c=8… with cross-
sectional areas A„x…=e�x, for �« ˆ−1,−4,−8‰ is depicted for the quadratic prescribed input
displacement u„0, t…= f„t…=2t2
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mined to obtain a general form of the velocity solution �analogous
to the displacement solution Eq. �6�� which for t�2l /c and x= l,
simplifies to

ut�l,t� =
2c

E�
F�t − l/c� �33�

5.2 Tapered Bars. In this section, we determine the drill
point velocity for the model PDE Eq. �1� with the cross-sectional
area given by A�x�=�e�x with ��0, cª�E /�, and F�t� the pre-
scribed force at x=0.

As before, using the properties of the exponential function A,
the model equation reduces to the telegraph equation BVP

utt − c2uxx − �c2ux = 0, 0 � x � l

u�x,0� = ut�x,0� = 0, ux�0,t� = −
F�t�
E�

, ux�l,t� = 0

After the change of variables u�x , t�=e−��x/2�v�x , t�, we have the
Klein–Gordon BVP

vtt − c2vxx +
�2c2

4
v = 0, 0 � x � l

v�x,0� = vt�x,0� = 0, vx�0,t� −
�

2
v�0,t� = −

F�t�
E�

,

vx�l,t� −
�

2
v�l,t� = 0

where we assume F�t�=0 for t�0.
Following the same general procedure as in Sec. 4.1, we mul-

tiply both sides of the Klein–Gordon equation by the product
H�x�H�l−x�, absorb the Heaviside functions inside the deriva-
tives, and obtain a nonhomogeneous equation analogous to Eq.
�16�, whose well known solution Eq. �17� yields an integral equa-
tion analogous to Eq. �18�, involving v and its spatial derivatives
at x=0 and x= l at various times. Applying the boundary condi-
tions and some manipulations gives, for t�2l /c, an expression for
v�l , t� in terms of F and the operator K �analogous to Eq. �23�, but
much more complicated�. Realizing that vt solves the same homo-
geneous Klein–Gordon BVP as v with F replaced by F�, we
obtain an expression for vt�l , t� and hence ut�l , t� after multiplying
bye−��l/2�. For t�2l /c, the final result can be written as

ut�l,t� = e−��l/2� c

E�
�I − K�−1��

0

t−l/c

J0�g�l,t − s���I + K�−1F��s� ds

+
2

�c
�I + K�−1KF��t − l/c�+ 2l�

0

t−l/c

J0��g�l,t − s��

��I + K�−1KF��s� ds�t� �34�

The asymptotic behavior near t= l /c is given by

ut�l,l/c + �� = 2e−�l/2 c

E�
�F��0�� + �F��0� +

�c

4
F��0�� �2

2


+ O��3� �35�

Note the asymptotic behavior of the solution for the constant cross
section case given by Eq. �33� is

ut�l,l/c + �� =
2c

E�
F��� =

2c

E�
�F��0�� + F��0�

�2

2
� + O��3�

since F�0�=0. Also, note that Eq. �35� is compatible with the

prescribed displacement solution Eq. �29� by using Eq. �31�.
Again, we see that for the tapered bar, the velocity of the drill

tip shortly after the arrival of the wave may be made arbitrarily
large by taking � arbitrarily negative. On the other hand, the
model Eq. �1� may only be valid for small ���.

6 Discussion and Conclusions
Although the wave equation is derived from the pointwise mo-

mentum balance and the results are consistent with the predictions
from Newton’s second law, design principles for elastic bodies in
the transient regime are very different from those for rigid bodies.
Varying the cross-sectional area of an elastic bar �or drill� allows
amplification of the velocity �at the point of the bar� resulting
from a force applied at its blunt end. We have found an analytic
solution expressing this amplified velocity at the point of the bar
in the transient response. At least for bars whose cross-sectional
areas are exponential functions of their axial positions, our for-
mula for the drill point velocity is

ut	l,
l

c
+ �
 = 2e−��l/2�� f��0� + �� f��0� +

�c

2
f��0�� + O��2�

�36�

where cª�E /�, ��0 and f�t� is the input displacement �which is
related to the applied force, F�t� by Eqs. �31� and �32��. A more
direct relationship between drill point velocity and F�t� is given
by Eqs. �34� and �35�. For compatible boundary and initial condi-
tions, formula �36� reduces to

ut	l,
l

c
+ �
 = 2�e−��l/2�f��0� + O��2� �37�

In addition to this formula, we have presented useful analytic
solutions of our mathematical model.

We note that if f��0��0, then t*= l /c, where t* is the moment
before the point of the bar begins to move; that is, the propagation
speed of the influence from the input displacement is �E /�. Also,
the velocity of the drill point increases as � decreases. This result
shows that the theoretical design problem is delicate; to wit, the
drill point velocity grows arbitrarily large as �→−	. Of course,
as mentioned previously, the model �1� may not be valid for large
���. On the other hand, as numerical experiments indicate �see Fig.
1�, as � decreases the large velocities have short durations. Thus,
the properties of the material composition of the drill as well as
the desired time interval of drill point action must be taken into
account.

In the transient regime �before one complete reflection of the
wave produced by the applied force� the velocity of a bar �with
constant cross-sectional area� at the point of force application is
proportional to the applied force. Moreover, this force–velocity
relationship is not affected by the length of the bar. For bars with
varying cross-sectional areas, the force–velocity relationship is
more complicated; but, we have given a formula for the appropri-
ate correction terms. These results are contrary to the behavior of
rigid bars. The motions of rigid and elastic bars are reconciled
only after an infinite number of reflections of the pressure wave.
Our model does not include wave damping, which must be taken
into account for long bars.
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Lattice Green’s Functions in
Nonlinear Analysis of Defects
A method for analyzing problems involving defects in lattices is presented. Special atten-
tion is paid to problems in which the lattice containing the defect is infinite, and the
response in a finite zone adjacent to the defect is nonlinear. It is shown that lattice
Green’s functions allow one to reduce such problems to algebraic problems whose size is
comparable to that of the nonlinear zone. The proposed method is similar to a hybrid
finite-boundary element method in which the interior nonlinear region is treated with a
finite element method and the exterior linear region is treated with a boundary element
method. Method details are explained using an anti-plane deformation model problem
involving a cylindrical vacancy. �DOI: 10.1115/1.2710795�

1 Introduction
Analysis of lattices is important for numerous applications in-

volving solid state physics, engineered light-weight materials, and
natural porous materials. In this paper, we are concerned with
analysis of lattices whose response is linear elastic except for a
finite region, where the response is nonlinear. Typically, such a
region is adjacent to a defect�s� either inside the lattice or on its
boundary. Ordinarily, such a problem gives rise to a sparse system
of nonlinear algebraic equations whose size scales with that of the
entire lattice. This may lead to significant computational costs for
large lattices, and poses conceptual difficulties for infinite lattices,
which arise frequently in analysis of defects.

In this paper, we propose a numerical method for infinite lat-
tices that allows one to state the problem as a dense system of
nonlinear algebraic equations whose size scales with that of the
nonlinear zone. The central idea of the proposed method is to
exploit lattice Green’s functions for condensing the degrees of
freedom in the linear zone to those on the interface between the
linear and nonlinear zones. The method also applies to finite lat-
tices. In those cases, the algebraic equations must include the
degrees of freedom associated with the outer boundary of the
linear zone.

The proposed method is similar to hybrid finite-boundary ele-
ment methods in which the interior nonlinear region is treated
with a finite element method and the exterior linear region is
treated with a boundary element method. For lattices, the govern-
ing equations are algebraic and therefore discretization is not part
of the problem. Furthermore, all basic ideas behind boundary el-
ement methods for continuum problems can be extended to prob-
lems on lattices �1�. Of course, on lattices, one obtains boundary
algebraic equations �BAEs� as opposed to boundary integral equa-
tions, and BAE involve lattice Green’s functions rather than clas-
sical Green’s functions.

Lattice Green’s functions have been widely used for analyzing
defects in lattices. In particular, in Refs. �2–10� lattice Green’s
functions are used for formulating nonlocal boundary conditions
for boundary-value problems associated with nonlinear fine scale
models. In contrast to those approaches, the present approach pro-
vides a systematic method for constructing various BAE, by ex-
ploiting parallels between BAE and boundary integral equations.

In principle, nonlocal boundary conditions can be obtained us-
ing simpler continuum Green’s functions. However, this approach
gives rise to difficulties associated with matching discrete and

continuum problems. Furthermore, continuum Green’s functions
are applicable only if both discrete and nonlinear effects are van-
ishingly small. In contrast, lattice Green’s functions are applicable
only if nonlinear effects are vanishingly small. This difference
implies that approaches based on continuum Green’s functions
require larger computational models, which are often prohibitive
�11�.

To the best of our knowledge, the idea of replacing finite dif-
ference equations with BAE was first published by Saltzer in a
technical report �12�.1 In the current terminology, Saltzer devel-
oped an indirect BAE corresponding to the discrete two-
dimensional Laplacian stencil

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

A numerical example provided by Saltzer does not support the use
of BAE because the corresponding dense algebraic problem is
more time-consuming than the original finite difference equations.
Fifty years later, this conclusion still holds for relatively small
problems. In contrast, large dense algebraic problems of size N
can be solved with fast iterative solvers that deliver the solution
using only O�N� storage and O�N� arithmetic operations. At this
stage, such methods are well developed for continuum but not
discrete problems; for references, see Refs. �13,14�. Nevertheless,
asymptotic expansions of lattice Green’s functions allow one to
extend O�N� methods for continuum problems to problems on
lattices �15�.

We present our numerical method using a model scalar-valued
problem involving a vacancy in an infinite simple square lattice.
In general, mechanical response problems are formulated in three
dimensions for the vector-valued displacements. From this per-
spective, the model problem can be regarded as an anti-plane
elasticity problem for a cylindrical vacancy. Of course, the arising
mathematical problem also describes conduction through the two-
dimensional lattice.

The rest of the paper is organized as follows. In Sec. 2, we
formulate the model boundary-value problem in terms of finite
difference equations. In Sec. 3, we consider an infinite lattice and
formulate the pertinent BAE. In Sec. 4, we derive expressions for
the potential energy of a defect in an infinite lattice. In Sec. 5, we
present a numerical example that demonstrates how the proposed
method works. In Sec. 6, we summarize the results.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received November 11, 2004; final
manuscript received August 20, 2006. Review conducted by Sanjay Govindjee.

1We are grateful to Proffessor Wolfgang Wendland for bringing this reference to
our attention.
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2 Model Problem
Consider a finite two-dimensional lattice whose elementary cell

is a unit square. The lattice contains a vacancy created by remov-
ing four links attached to the same node. The lattice is deformed
such that the nodal displacements have only the out-of-plane com-
ponent. The constitutive equation for each link relates the out-of-
plane component of the internal force and the relative out-of-plane
displacement of the ends �u

g = kF��u� �1�

Here k is a constant and the function F is constructed so that
F�0�=0 and F��0�=1. Thus k can be regarded as the stiffness
coefficient for �u�1. Alternatively, one may regard g as the flux,
u as the temperature, and k as the conductivity. The lattice is
loaded such that the displacements along its external boundary �
are prescribed as u�n�=� ·n, where � is a constant vector. The
nodes along the vacancy �or internal� boundary are force free. A
representative example of out-of-plane lattice deformation is
shown in Fig. 1.

The governing equilibrium equation for the reference node n is
written in the form

Au�n� + f�n� = 0

with

Au�n� ª �
p�N�n�

g�p,n� �2�

where the sum is over the forces g exerted on the node n by the
links adjacent to this node, and f is the external force. We choose
the model problem such that f =0. Nevertheless, when we con-
sider free-body diagrams for lattice subdomains, it is natural to
regard forces acting on a subdomain as external.

For an internal node

N�n� = �n ± e1,n ± e2�

where e1= �1,0�, e2= �0,1�. Accordingly, the operator A can be
expanded as

Au�n� = k�F�u�n + e1� − u�n�� + F�u�n − e1� − u�n��

+ F�u�n + e2� − u�n�� + F�u�n − e2� − u�n���

For a boundary node, the number of the adjacent links is between
two and four, and the operator A takes this into account.

Let us denote by � the nodes forming the lattice except for
those that belong to � �Fig. 2�. Then the model boundary-value
problem is stated as

Au�n� = 0 n � �

u�m� = � · m m � � �3�
This boundary-value problem has a unique solution as long as
F��x��0 �16�.

There are good reasons to consider problems involving infinite
lattices. Such problems allow one to isolate defects and study their
basic properties. However, infinite lattices pose major difficulties
for the stated boundary-value problem simply because in the limit
the problem size tends to infinity. One may try to construct an
approximate solution by considering a sequence of finite lattices,
with the expectation that such a sequence converges sufficiently
fast. Here we attack the problem differently, by assuming that
����1. This allows us to linearize the operator Au�n� at the nodes
far away from the defect:

Au�n� 	 Lu�n� ª k�u�n + e1� + u�n − e1� + u�n + e2� + u�n − e2�

− 4u�n��
In the next section, it is shown that this approximation is sufficient
for formulating a finite system of equations for an infinite lattice.

3 Infinite Lattice
For now, � remains finite but sufficiently large, so that it con-

tains a �2N�� �2N� square centered at the vacancy, such that every
link outside of this square exhibits the linear response. We intro-
duce the following definitions �see Fig. 2�:

1. �− is the set of nodes forming the square containing the

vacancy; �+ª� \�− and �̄+ª�+��;

Fig. 1 Deformation of the lattice in the vicinity of the vacancy

Fig. 2 Node and link sets involved in the analysis. The set �−,
formed by the nodes separating the linear and nonlinear zones,
is denoted by the squares containing minus sign. The sets �+
and C+ are denoted by the squares containing the plus and �
signs, respectively. The union of these two sets is the first layer
of the nodes in the linear zone. The set �, formed by the exte-
rior nodes of a finite lattice, is denoted by black squares. All
nodes inside �− and �− itself form the set �−; the remaining
nodes form the set �̄+ and �+=�̄+ \�. The links bounded by �−
and �+ are denoted by �0, the links bounded by �+ are denoted
by �−, and the links bounded by �+ C+, and � are denoted
by �+.
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2. �− is the set of the 8N+4 nodes along the outer boundary of
�−;

3. �+ is the set of the 8N+4 nodes along the inner boundary of
�+. This set does not include the four corner nodes, which
we denote by C+;

4. �0 is the set of the 8N+4 links, each having one node in �−
and one node in �+. We denote the elements of this set by

m ,n� with the provision that m��− and n��+.

Now we can replace Eq. �3� with

A−u�n� + f−�n���n,m� = 0 n � �− m � �− �4�

and

L+u�n� + f+�n���n,m� = 0 n � �+ m � �+

u�p� = � · p p � � �5�

where f− and f+ are the forces exerted by the links from �0 on �−
and �+, respectively. The subscripts of the operators A and L
denote that the operators are defined with respect to the domains
�− and �+, respectively, and � is the Kronecker’s symbol defined
by

��n,m� = �1 for n = m

0 for n � m


By construction, the links from �0 are characterized by the linear
constitutive equation and therefore the internal force for the link

m ,n���0 can be expressed as

g�m,n� = k�u�n� − u�m�� m � �−, n � �+ �6�

The equilibrium conditions dictate

f−�m� = �

m,n���0

g�m,n� �7�

and

f+�n� = − g�m,n� 
m,n� � �0 �8�

Equations �7� and �8� are different because each corner node of �−
is connected to two links from �0, while each node of �+ is
connected to only one link from �0. We can combine Eqs. �6�–�8�
and write

f−�m� = �

m,n���0

k�u�n� − u�m�� �9�

and

f+�n� = − k�u�n� − u�m�� 
m,n� � �0 �10�

On the surface, the only advantage of the new formulation is that
it uses the linear equations in �+, which is a marginal simplifica-
tion because the equations in �− remain nonlinear. Nevertheless,
in what follows we demonstrate that, in the limit as the lattice
expands to infinity, one can replace Eq. �5� with a BAE on �+, and
as a result reduce the original problem to that defined on �−. This
approach does not affect the finite difference equations on �−—it
merely supplements them with nonlocal boundary conditions. Al-
ternatively, one can reduce the original problem to that defined on
�−��+.

The BAE on �+ is formulated using the reciprocity theorem and
the fundamental solution, following the standard procedure for the
corresponding boundary integral equations �e.g. Ref. �17��. Ac-
cordingly, we define the fundamental solution U�m ,n� as the dis-
placement at the node n induced by a unit force applied at the
node m in an infinite perfect lattice

U�m,n�

=
1

16�2k�−�

� �
−�

�
exp�i�	1�m1 − n1� + 	2�m2 − n2��� − 1

sin2 	1

2
+ sin2 	2

2

d	1 d	2

According to Ref. �18�, this expression and its analysis were first
presented by Duffin and Shaffer in a technical report; see also Ref.
�15�. For large �m−n�, as U�m ,n� approaches the classical funda-
mental solution �18�

U�m,n� � − �2�k�−1 log�m − n�

Now we consider three mechanical states defined on �̄+:

State 1. Subject �̄+ to the boundary displacements u�n�=� ·n

on ��̄+. By inspection one can establish that these boundary con-
ditions induce spatially uniform forces in the links, in the sense
that all links aligned along e1 �e2� transmit the same force k
1
�k
2�. We denote the boundary displacements and forces of this
state by u�0� and f �0�, respectively.

State 2. Subject �̄+ to the displacements u�n�=� ·n on �, the
forces f+�n� on �+, and f =0 on C+. We denote the boundary
displacements and forces of this state by u and f , respectively.

State 3. Subject the infinite lattice to a unit force applied at n
��+, so that the induced displacements are given by U�m ,n�.
Isolate �̄+ from the infinite lattice by replacing the links connect-

ing �̄+ to the rest of the infinite lattice with their internal forces.
For q��+, those forces can be computed as

F�q,n� = k�U�p,n� − U�q,n�� 
p,q� � �0 and n � �+

�11�

Note that F�q ,n�=0 if q�C+. Also note that the entire set of

forces acting on ��̄ includes F�q ,n� and the unit force applied at
n.

Upon application of the reciprocity theorem �known as the
Betti–Maxwell theorem in structural mechanics� to the first and
third states, we obtain the BAE

u�0��q� + �
n���̄+

F�n,q�u�0��n� = �
n���̄+

U�n,q�f �0��n� q � �+

In formulating this equation, the third state was generated by ap-
plying a unit force at q. Note that in both states the forces at C+
are equal to zero. Similarly, for the second and third states we
obtain the BAE

u�q� + �
n���̄+

F�n,q�u�n� = �
n���̄+

U�n,q�f�n� q � �+

By subtracting the two BAE we obtain

u�q� − u�0��q� + �
n��+

F�n,q��u�n� − u�0��n��

= �
n��+

U�n,q��f+�n� − f �0��n�� + �
n��

U�n,q��f�n� − f �0��n��

�12�

Now we can consider the limit as � tends to infinity while �+ is
fixed. To this end we define the metric of � as the radius R of the
largest circle � can circumscribe. By construction

�
n��+

f�n� = �
n��+

f �0��n�

Then, to a leading order, an observer on � regards the system of
forces f − f �0� applied to �+ as a dipole. For large R, the asymptotic
behavior on the lattice is similar to that in a continuum body.
Accordingly, f − f �0� on � behaves similar to the continuum stress
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field induced by a dipole, which decays as R−2. This decay is
sufficient to overcome the logarithmic growth rate of U and the
linear growth rate associated with the summation. As a result in
the limit as R→�, Eq. �12� can be expressed as

u�q� − u�0��q� + �
n��+

F�n,q��u�n� − u�0��n��

= �
n��+

U�n,q��f+�n� − f �0��n�� q � �+ �13�

This equation is the desired BAE on �+. It can be combined with
Eqs. �9� and �10� to eliminate f− from Eq. �4�, so that the entire
problem can be stated on �−. Alternatively, one may combine
Eqs. �4�, �9�–�11�, and �13� to state the problem on �−��+

A−u�m� + �

m,n���0

k�u�n� − u�m�� = 0 m � �− �14�

u�q� − u�0��q� + �
n��+

k�U�p,q� − U�n,q���u�n� − u�0��n��

= �
n��+

U�n,q��ku�p� − ku�n� − f �0��n�� q � �+, 
p,n� � �0

Note that it is acceptable to replace Eq. �14� with the expression

F�u�m + e1� − u�m�� + F�u�m − e1� − u�m��

+ F�u�m + e2� − u�m�� + F�u�m − e2� − u�m�� = 0 m � �−

which does not take into account that the response of the links in
�0 is linear.

4 Energy Analysis
Energy analysis plays a central role in mechanics of structures

and defects. In particular, using energy concepts, one can analyze
structural stability and identify thermodynamic forces driving
evolution of defects.

The strain energy of a link subjected to the relative displace-
ment �u is defined as

w��u� =�
0

�u

kF�	�d	

For the linearized constitutive equation, this expression is simpli-
fied to

w��u� = 1
2k�u2

The strain energy W of a finite lattice is defined as the sum of the
strain energies of the individual links. If the lattice is subjected to
prescribed boundary displacements, then the strain and potential
energies are equal: W=�. In this section, we restrict our analysis
to this case.

The potential energy of a defect is defined as the difference
between the potential energy of the lattice containing the defect
and the strain energy of the perfect lattice

� = � − ��0� = W − W�0�

Here, following the development in the previous section, we as-
sume that ��0� and W�0� are consistent with the linearized consti-
tutive equation, so that, using the virtual work principle, we can
express

��0� = W�0� =
1

2 �
n��

u�0��n�f �0��n� �15�

To compute the potential energy of the lattice with the defect,
we begin with splitting the links into two nonintersecting sets. The
first set �− contains all the links with at least one node in the set

�−. The complementary set is denoted by �+. Then

� = W = �
l��−

w�l� + �
l��+

w�l�

The first term in this equation is elementary to compute once the
displacements on �−��+ have been determined. Using the vir-
tual work principle, the second sum can be expressed in terms the
sum over �+��, so that

� = �
l��−

w�l� +
1

2 �
n��+��

f�n�u�n� �16�

Upon subtraction of Eq. �15� from Eq. �16�, we obtain

� = �
l��−

w�l� +
1

2 �
n��

�f�n�u�n� − f �0��n�u�0��n��

+
1

2 �
n��+

f�n�u�n� �17�

Since, for n��, u�n�=u�0��n�, the sum over � can be expressed
as

�
n��

�f�n�u�n� − f �0��n�u�0��n�� = �
n��

�f�n�u�0��n� − f �0��n�u�n��

The reciprocity theorem allows us to replace the sum on the right-
hand side of this expression with a sum over �+

�
n��

�f�n�u�0��n� − f �0��n�u�n�� = − �
n��+

�f�n�u�0��n� − f �0��n�u�n��

and therefore Eq. �17� takes the form

� = �
l��−

w�l� +
1

2 �
n��+

�f�n�u�n� + f �0��n�u�n� − f�n�u�0��n��

�18�

This expression does not pose any difficulties in the limit as �
expands to infinity.

The development under traction-prescribed boundary condi-
tions on � follows essentially the same steps, and leads to the
same answer.

5 Numerical Examples
In this section, for demonstration purposes, we apply the cur-

rent method to stability analysis of an infinite lattice containing a
vacancy. In the spirit of the classical papers of Frenkel and Kon-
torova �19�, Peierls �20�, and Nabarro �21�, we adopt the consti-
tutive equation in the form

g = kF��u� =
k

2�
sin 2��u

For this equation, the issue of stability arises naturally because
F���u� changes its sign. For the boundary conditions restricted to
the form

u�n� = � · n = �
,0� · �n1,n2�

we seek the smallest value of 
 that gives rise to singular alge-
braic equations; we denote that value by 
c.

The solution strategy involves the following steps:

1. Set N=1;
2. Choose a value for 
;
3. For the chosen 
, compute the solution of Eq. �14�;
4. For the computed solution, evaluate the Jacobian J corre-

sponding to Eq. �14�;
5. Adjust the value of 
 until one of the eigenvalues of J be-

comes close to zero. The corresponding 
 provides 
c for
the current N; and
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6. Increase N and repeat steps 2–5 until �
c�N+1�−
c�N�� is
sufficiently small.

Note that an analytic expression for J is straightforward to obtain
upon differentiation of Eq. �14�.

Computational results are presented in Table 1. They clearly
indicate that the computational procedure converges as N in-
creases. Furthermore, they suggest that, for this problem, the non-
linear effects are highly localized, and can be neglected several
lattice spacings away from the vacancy.

6 Closure
In this paper, we presented a numerical method for analyzing

lattice defects using lattice Green’s functions. In contrast to exist-
ing approaches, the present method exploits lattice Green’s func-
tions following ideas well established for boundary integral equa-
tions. This use of lattice Green’s functions was proposed by
Martinsson and Rodin �1� who referred to the arising equations as
BAEs. In this paper, BAEs are used to derive nonlocal boundary
conditions on a finite zone surrounding the defect. In a companion
paper �22�, we considered applications of lattice Green’s functions
to models of interfacial and linear defects.

BAE can be particularly beneficial for truly large-scale prob-
lems involving lattices. First, nonlocal boundary conditions based
on lattice Green’s functions are more effective than those based on
continuum Green’s functions because they take into account the
discrete lattice structure. Second, BAEs provide a direct link to
fast iterative procedures that exploit preconditioners and fast sum-
mation methods for matrix–vector multiplication. Furthermore,
preliminary computations indicate that BAE are particularly well
suited for such methods because they lead to well-conditioned
algebraic problems �1�.
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Complex Flow Dynamics in Dense
Granular Flows—Part II:
Simulations
By applying a methodology useful for analysis of complex fluids based on a synergistic
combination of experiments, computer simulations, and theoretical investigation, a model
was built to investigate the fluid dynamics of granular flows in an intermediate regime,
where both collisional and frictional interactions may affect the flow behavior. In Part I,
experiments were described using a modified Newton’s Cradle device to obtain values for
the viscous damping coefficient, which were scarce in the literature. This paper discusses
detailed simulations of frictional interactions between the grains during a binary colli-
sion by employing a numerical model based on finite element methods. Numerical results
are presented of slipping, and sticking motions of a first grain over the second one. The
key was to utilize the results of the aforementioned comprehensive model in order to
provide a simplified model for accurate and efficient granular-flow simulations with
which the qualitative trends observed in the experiments can be captured. To validate the
model, large scale simulations were performed for the specific case of granular flow in a
rapidly spinning bucket. The model was able to reproduce experimentally observed flow
phenomena, such as the formation of a depression in the center of the bucket spinning at
high frequency of 100 rad/s. This agreement suggests that the model may be a useful tool
for the prediction of dense granular flows in industrial applications, but highlights the
need for further experimental investigation of granular flows in order to refine the
model. �DOI: 10.1115/1.2711219�

Keywords: dense granular flows, computer simulations, friction, nonlinear dynamics,
rotating bucket

1 Introduction
The behavior of granular materials such as sand or powders is

one of the mysterious problems of modern science �1�. As a col-
lection of inelastic particles, the flow of granular media is neither
similar to that of solids nor gases nor even liquids. As particle
inelasticity is increased and the collisions become more and more
inelastic, simple hydrodynamics clearly breaks down and the oc-
currence of the phenomenon of inelastic collapse can be observed
�2�.

A most intriguing phenomenon in the mechanics of granular
material is size segregation, observed in models of vibrated granu-
lar mixtures such as powders or sand. Several mechanisms have
been proposed to explain the process of de-mixing the different
components of the system under shaking. However, the criteria for
predicting segregation in a mixture, which is of great practical
importance, are largely unknown.

Size segregation is observed in avalanches �3�. Avalanches are
shallow, gravity driven, free surface flows of solid particles, which
occur when a surface layer of granular material becomes unstable,
and may flow at speeds over 200 km/h. Bak �4�, inspired by
avalanches in a sand pile, discovered the phenomenon of self-
organized criticality, which provides a plausible explanation for
many natural phenomena. Gray and Hutter �5� have observed that
in conjunction with particle size segregation within the flowing
avalanche and the occurrence of dispersed shock waves, the ava-
lanche quickly comes to rest.

In silos when a small hole is opened at its center base the grains
develop an internal core flow and a V-shaped depression may be
formed, as illustrated in Fig. 1�a�. It is somewhat surprising that

Baxter and Yeung �6� reported that at high shear rotation rates in
a spinning bucket of sand a depression develops along the rotation
axis, as shown in Fig. 1�b�. According to Gray and Hutter �5�, in
silos, grains on either side of the core are at rest or the pine tree
pattern is preserved there. Apparently, the grains are fed to the
core by a sequence of intermittent avalanches that flow down the
faces of the depression.

Again inspired by avalanches in a silo, Baxter and Yeung �6�
have suggested that at low rotation rates in a rotating bucket, a
central region could occur whose slope is significantly less than
the critical slope. By utilizing the minimal-ingredient theories of
granular surface behavior �7�, they, with some degree of success
reproduced the central subcritical region observed experimentally
at low shear rates. However, this model is based on the fundamen-
tal assumption of a thin flowing layer, and hence did not succeed
for predicting the flow dynamic behavior of the grains at moderate
rotation rates for which the shrinking of the height of the cusp in
the central region was observed, even though the rotation rate was
held fixed �6�. In addition, it appears that a fundamentally differ-
ent model from that proposed in Baxter and Yeung �6� is required
to reproduce the steep depression around the center observed at
high rotation.

Note that the behavior of granular flow depends on microscopic
effects, far or close to the scale which can be observed with the
eye. For these systems, it may not even be clear how to begin
constructing an approximate theory in a reasonable way. In this
light, computer experiments have a valuable role to play in pro-
viding essentially exact results for problems of complex fluid. It
may be difficult to carry out experiments under different condi-
tions, while a computer experiment of the complex fluids would
be perfectly feasible. Quite subtle details of particle motion, struc-
ture and other micromechanical effects in granular flows are dif-
ficult to probe experimentally, but can be extracted readily from a
computer experiment.

Contributed by the Applied Mechanics Division of ASME for publication in the
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As an example, the surfaces of grains may be characterized as
randomly rough with surface roughness on many different length
scales. Generally speaking, surface properties such as contact area
between the colliding grains in a granular flow are difficult to be
measured accurately by experiments. In fact, when two rough
grains are brought into contact, the area of real contact is a small
fraction of the nominal contact area. The real contact area between
the grains has a direct importance for sliding friction. It also has a
major influence on adhesive forces between two grains. Therefore
it is advantageous to utilize computer experiments to test existing
contact models for rough solids and to point the way towards new
models.

The objective of this attempt is to develop a model capable of
capturing the complex behavior of granular flows. The model will
be validated through its application to the above-mentioned unex-
plained hydrodynamic phenomena that are observed in spinning
buckets. The organization of the present paper is as follows. In
Sec. 2, the finite element-based model proposed in the previous
work �8� was generalized to take into account contact between
rough grains in order to improve the accuracy of the estimated
contact stresses in the interacting grains. By utilizing the results of
the aforementioned finite element-based model, a simplified
model was presented with the minimum level of detail for accu-
rate and efficient granular-flow simulations. In Sec. 3, the devel-
oped simplified model was used to perform simulations of the
specific example of granular flows in a spinning bucket, which is
a system of industrial relevance whose dynamic behavior is not
well understood. The model results were compared with available
experimental data. Finally in Sec. 4, the concluding remarks were
presented and recommendations for future study were developed
based on the comparisons.

2 Force-Driven Models
The simulation of an impact between bodies is computational

complicated due to the dependence of the boundary conditions of
the bodies on the solution variables �9�. A collision algorithm
consists of two parts, which are a contact search algorithm that
identifies penetration between the bodies �10–14�, and a general
contact algorithm that satisfies the kinematic contact condition as
well as calculates the normal and shear stresses on the interacting
surfaces �15–17�. A model for colliding rough spheres for accurate
granular simulations is presented in the following section.

2.1 Finite Element Model for Colliding Rough Spheres. In
a finite element model as presented in Ref. �8�, the influence of the
surface roughness on collision behavior can be included using a
highly detailed model in which the actual geometry of asperities
are considered �18�. When magnifying a glass ball surface about
100 times, rough contours, which called asperity, can be seen
much lager than molecular dimensions. The detailed model of
asperities will be very large and it is likely to be impractical when

modeling behavior of colliding glass balls. However, the detailed
model of a single asperity could be of use to provide valuable
insights in simpler models.

In the present attempt a simplified model is used for which
friction is modeled based on a Coulomb formulation. In the model
as presented in Fig. 2, micromechanical effects are modeled as
nonlinear interface stiffness, k, and a coefficient of friction, �,
which depends on sliding distance, sliding velocity, temperature
and pressure.

The finite element contact modeling presented in Ref. �8� is
based on a master–slave approach. In this approach, the nodes on
the slave surface are not allowed to penetrate the segments of the
master surface. The frictional algorithm implemented uses the
equivalent of an elasto–plastic spring.

When a slave node penetrates a master segment in a system as
illustrated in Fig. 3�a� at time tn, a compatibility normal force,
Fn

�N�, is introduced to the master segment. As outlined in the pre-
vious work �8�, the normal forces are calculated with the aug-
mented Lagrangian method. By computing the incremental move-
ment of the slave node, �e, the interface force is updated to a trial
value F�t�=Fn

�f�−k�e. The interface forces are then updated for all
contact nodes that are marked with an �in contact� tag. By check-
ing the yield condition, if �F�t�����Fn

�N�� then the frictional force is
updated to Fn+1

�f� =F�t�, and if �F�t�����Fn
�N�� then Fn+1

�f� is set to
� �Fn

�N��F�t� / �F�t��. Here, the coefficient of friction is estimated us-
ing an expression given as �=�d+��e−b��e/�t�. The interface
shear stress that develops as a result of Coulomb friction can be
nonuniform whose maximum value is not at the initial point of
contact, as illustrated in Fig. 3�c�. However, the normal stress
appears to be symmetric about the initial point of contact as de-
picted in Fig. 3�b�. The effective stress, �eff, defined as
1/�2���xx−�yy�2+ ��xx−�zz�2+ ��yy −�zz�2+6��xy

2 +�yz
2 +�xz

2 ��1/2,
is a useful quantity with regard to formulation of strain hardening
rules. Figure 3�d� represents the computed contours of the effec-
tive stress around the initial point of contact, C.

The numerical results shown in Fig. 3 represent the collision of
two monosized, elastic, rough, glass balls with diameter of �
=2 cm. The material properties chosen for the balls are listed in
Table 1. The static and dynamic coefficients of friction are set to
�s=0.85, �d=0.7, respectively, and the decay constant is set to

Fig. 1 „a… A steep depression observed in flowing fine grains
through a small hole in silos. „b… Surface shape at high rotation
rate reported in Baxter and Yeung †6‡. Fig. 2 „a… Two monosized colliding, rough spheres with diam-

eter of � at the beginning of the approach period. The sphere
on the left with the axial and tangential velocity components of
Vx, and Vy, respectively, is brought into contact with the sphere
on the right, which is initially stationary. They touch initially at
a single point C. „b… 3D finite element mesh for the spheres as
shown in „a…. More than 4Ã105 tetrahedral elements were used
in the numerical treatments. The elements at the vicinity of
point of initial contact are magnified in the inset „c…. The spatial
distribution of nodes used in the numerical treatments. Notice
the fine zone in the vicinity of contact area where the gradient
of stresses and strains are high.
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b=0. The initial velocity components of the left ball �before col-
lision� were Vx=0.7 m/s, Vy =−0.1 m/s, and Vz=0. The right ball
was initially stationary. The instantaneous results of stresses
shown in Fig. 3 are taken after t�3�10−5 s, when the relative
tangential velocity of the initial points of contact on the first and
the second spheres reached zero.

The finite element model presented in this section, which is a
generalized version of that detailed in Ref. �8�, is intended to be
used to provide insights into simpler models discussed in the fol-
lowing section.

2.2 Test Cases. The first two test cases presented in this sec-
tion are those of collisions between two monosized, visco-elastic,

rough, glass balls. In a binary collision of particle i and particle j
the impulsive force vector excreted by particle i on particle j may
be given as

Jq =
m�1 + e�n��

2
�gp

�ij�kp�kq +
mK�1 + e�t��

2�1 + K�
�gp

�ij� − �gp
�ij�kp�kq� �1�

The first term on the right hand side of Eq. �1� represents the
normal impulse, which is in the direction of line of centers. The
second term is the tangential impulse, which is in direction per-
pendicular to the line of centers and lies in the plane of r�ij�, and
J. Here, the impact velocity is given by

gp
�ij� = �Vp

�i� − Vp
�j�� +

�

2
�pqmkq

�jp��	m
�j� + 	m

�p�� �2�

Note that the kinetic energy of the particles is not conserved in a
collision between visco-elastic rough balls. In order to describe
the degree of plasticity of the collision a coefficient of restitution,
e�n�, for the collision is introduced. The coefficient of restitution in
normal direction is usually defined as the ratio of final to initial
relative velocity components of the striking objects in the direc-
tion normal to the contact surfaces. Thus the proportionality rela-
tion may be given as

Fig. 3 „a… Two elastic balls are deformed in the vicinity of their point of first contact, C, under
the action of the normal and tangential forces due to collision. The contact area is generally
finite though small compared with the dimensions of the balls. Notice that the size of gray color
contact area is exaggerated. „b… Contour plot of the computed instantaneous normal stress,
�xx, on a cutting xy plane passing through the centers of the balls. „Inset… The contact area is
magnified to provide a better visualization. „Right… Contour plot of �xx on a cutting yz plane
perpendicular to the line of the centers. The position of the cutting yz plane is shown in „a…. „c…
Contour plot of the computed instantaneous shear stress, �xy, on a cutting xy plane passing
through the centers of the balls. „Inset… The contact area is magnified to provide a better
visualization. „Right… Contour plot of �xy on a cutting yz plane perpendicular to r„ij…: „d… Contour
plot of the computed instantaneous effective stress, �eff, on a cutting xy plane passing through
the centers of the balls with the contact area is magnified in the inset to provide a better
visualization. „Right… Contour plot of �eff on a cutting yz plane perpendicular to r„ij….

Table 1 Material properties used in simulations

Properties Values


s 2390 kg/m3

E 6.3�1010 Pa
G0 2.53�1010 Pa
G� 0.63�1010 Pa
K 4.1�1010 Pa
� 9.87�10−6 1 /s
 0.244
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�gp
�ij��kq�kp = − e�n��gp

�ij�kq�kp �3�
As mentioned earlier, in this attempt it was assumed that Coulomb
friction law �19� describes friction between two colliding balls
with a friction coefficient of �. If the normal impact velocity,
V�n�=gp

�ij�kp, is small, then an expression for the tangential coeffi-
cient of restitution, which is the ratio of the relative velocity of the
pair colliding particles in the tangential direction after collision to
that before collision, may be found as

e�t� = − 1 + ��1 + e�n���1 +
1

K
	 ��gp

�ij�kp�kq�
��gq

�ij� − �gp
�ij�kp�kq��

�4�

The negative values of e�t� in Eq. �4� indicate a reduction in the
tangential component of the postcollisional relative velocity
�without change in its direction� which represents a slipping mo-
tion of a first ball over the second one.

2.3 Slipping Motion. Equation �4� predicts the coefficient of
tangential restitution for a collision throughout its lifetime only as
much friction will act as is necessary to prevent sliding. To dem-
onstrate the benefit of the detailed finite element model discussed

in the preceding section, in the following the numerical results are
presented for a binary collision between two monosized rough,
visco-elastic glass balls whose material properties are presented in
Table 1.

In this case, the moving ball with precollisional velocity com-
ponents of Vx=0.1 m/s, Vy =0.5 m/s, and Vz=0 collides with a
stationary ball. The arrangement of the balls is similar to that as
shown in Fig. 2�a�, and the diameter of identical balls is �
=2 cm.

Figure 4�a� represents computed contours of the normal stress,
�xx, on a cutting xy plane passing through the centers of the balls
at the end of the approaching period, where the contact pressure at
the initial point of contact reached a maximum value. The normal
stress presses the balls together to give rise to a contact surface. In
the absence of friction forces, the computed contours of shear
stresses, �xy, are illustrated in Fig. 4�b�.

In the presence of friction forces, a tendency to slide exists, and
consequently a tangential traction of friction develops in a direc-
tion that opposes the relative motion. The traction of friction in-
troduces extra shear stresses into contact surface. Contours of
shear stresses are illustrated in Fig. 4�c�, which may be compared

Fig. 4 „a… Computed instantaneous contours of the normal stress, �xx, on a cutting xy plane at
t=0.06 ms. „b… Computed instantaneous contours shear stress, �xy, on the same cutting plane
as in „a…, at t=0.06 ms and �=0. „c… Computed instantaneous contours shear stress, �xy as in
„b… for �=0.4. „d… The tangential component of impact velocities of the colliding balls versus
time. The diamonds represent the tangential impact velocity of the initially moving ball and the
gradients are those of the initially stationary ball.
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with contours of shear stresses in the absence of friction forces as
illustrated in Fig. 4�b�. The amount of slip is dependent on the
motion of the balls, and is also dependent on the deformation and
the friction in the contact.

Figure 4�d� represents the tangential component of impact ve-
locity of colliding balls as a function of time. It can be seen that
there is no change in the direction of the tangential component of
the post-collisional relative velocity throughout collision lifetime.
This observation also implies that a slipping motion occurred on
the first ball over the second ball. Hence, Eq. �4� may be used to
estimate the value of coefficient of tangential restitution for the
collision whose detailed results are presented in Fig. 4. By substi-
tuting the computed value of the coefficient of normal restitution
from the finite-element model into Eq. �4�, estimations may be
made for the coefficient of tangential restitution. The estimated
value for the coefficient of tangential restitution is found to be
−0.7347.

By using the magnitudes of final velocities of both balls at the
end of contact as given in Fig. 4�c�, the coefficient of tangential
restitution predicted by the finite-element model is found to be
−0.7309. An excellent agreement between the model prediction
for the coefficient of tangential restitution and that calculated us-
ing Eq. �4� may establish the validity of the numerical model.

2.4 Sticking Motion. The coefficient of friction for impact
phenomena cannot be accurately determined. Consequently, its
specification rests upon corresponding values for noncollision
processes. The second case as described in the following demon-
strates the important role that the coefficient of friction plays in
the dynamics of a collision.

By increasing the coefficient of friction for the first case to 0.8,
the normal impulse times the coefficient of friction exceeds the
magnitude of the tangential impulse. In this case, a sticking mo-
tion may occur at impact. As illustrated in Fig. 5�a�, in sticking
contacts not only the reduction of magnitude of the relative veloc-
ity in the tangential direction but also the reversal of its direction
may occur. Here, no estimations can be made for the coefficient of
tangential restitution using Eq. �4�, because for a sticking motion
e�t��−1+��1+e�n���1+1/K� � �gp

�ij�kp�km� / ��gm
�ij�− �gp

�ij�kp�km��.
Figure 5�b� represents the computed contours of the normal

stress, �xx, at the end of the approaching period for a sticking
motion of the first ball over the second one. In this case, a tan-
gential impulse less than the limiting friction impulse was applied
to the balls in contact so that no initiation of slip could be ob-
served. Consequently, contours of the shear stress, �xy, as illus-
trated in Fig. 5�c� appear to be different than those representing
slipping motion as shown in Fig. 4�c�. Generally speaking, in a
sticking motion, small tangential sliding may occur to avoid infi-
nite traction at the outer edge of the contact area while the contact
as a whole does not slide. The stick radius of the contact area is
dependent on the value of coefficient of friction among other fac-
tors. The present results suggest that the size of the slip region
decreases with the magnitude of friction impulse.

To demonstrate more examples of sticking motion, in the fol-
lowing section the behavior of a superball will be described which
tends to stick to the surface during a bounce.

2.5 Spin Reversal. When a child’s toy called a superball,
which is a small ball having the combined properties of a high
coefficient of normal restitution and a high surface friction coef-
ficient, collides on a flat surface, the rebound spin, and speed may
differ from those values before the collision.

In this section, this rather surprising phenomenon of spin rever-
sal is simulated using the finite-element model discussed in the
preceding section. Figure 6�a� represents a superball thrown at
low speed having a clockwise spin onto the surface, and Fig. 6�b�
illustrates the grid used in the numerical treatments. A suitable
level of mesh refinement is established on the basis of the Hertz
elastic contact problem. Here, no consideration is given to the
acceleration due to gravity.

Fig. 5 „a… Computed instantaneous contours of the normal
stress �xx on a cutting xy plane at t=0.06 ms. „b… Computed
instantaneous contours shear stress �xy on the same cutting
plane as in „a… at t=0.06 ms. Notice that in this case, a normal
contact is sheared by a tangential force, which is insufficient to
cause failure. „c… The tangential component of impact velocities
of the colliding balls versus time. The diamonds represent the
tangential impact velocity of the initially moving ball and the
gradients are those of the initially stationary ball.
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Figure 6�c� represents the superball thrown with a clockwise
topspin at an angular speed around 8.9 rev/s. Figure 6�d� depicts
the incident of the superball on the flat wall. Finally, Fig. 6�e�
shows the superball spinning backward at around 8.9 rev/s. It can
be clearly seen from Fig. 6 that there is the phenomenon of spin
reversal. Here, the diameter of the superball is �=2 cm. Choosing
the appropriate set of material properties for the ball and the flat
wall, a coefficient of normal restitution was obtained close to
unity, while the coefficient of friction was set to �=0.8.

2.6 A Simplified Model. Useful results can be obtained using
the detailed micromechanics of the collision discussed in the pre-
ceding section. However, performing three-dimensional simula-
tions with a large number of balls does not seem to be feasible due
to computational intensity which could be involved. The main
goal in this section is to utilize the results of the finite-element
based model to develop a simplified model by which three-
dimensional simulations of a large number of particles can be
conducted in more reasonable times.

The simplified model as proposed in the previous work �8�
assumes that the grains behave as viscoelastic bodies that inter-
penetrate during a collision, resulting in the generation of restor-
ing forces that can be characterized by Young’s modulus. The
short-range interaction of the particles, therefore, may result in a
large gradient of the interaction force. The interaction force be-
tween the grains in contact should be calculated about 1000 times
during a collision to provide accurate results.

As shown in the preceding section, a ball translates and spins,
depending on the forces and torques acting on it. In the presence
of a gravitational field, the equation of motion of a typical spheri-
cal ball j having repulsive interactions with its neighbors, together
with normal and tangential forces, may be given as

dVi
�j�

dt
= − g�iz + 


p=1

Nj

Fi
�jp� �5�

Here, Fi
�jp�=Fi

�jp�n +Fi
�jp�t, where Fi

�jp�n, and Fi
�jp�t represent the nor-

mal and tangential force per unit mass acting on particles j, re-
spectively, which may be conjectured by �8�

Fi
�jp�n = ��E/3�1 − �2���1/2��jp�3/2

+ K�n���G0
2/�G0

− G�����jp�d��jp�

dt
�ki

�jp�

Fi
�jp�t = − �k�t���jp�3/2

+ K�t�d��jp�

dt
	ei

�t� �6�

where the tangential unit vector is given as

ei
�t� = �iqpkq

�jp��pjkgj
�jp�kk

�jp�/�gj
�jp���1 − gm

�jp�km
�jp�/�gj

�jp���

The magnitude of ��jp�, which represents the tangential dis-
placement, is given as , where the tangential displacement ��jp�, is
set initially to zero when a new contact is established and once the
contact is broken, all memory of the prior displacement is lost.

Equation �6� represents in a crude manner the complex behav-
ior at real contact as discussed in the preceding section. Recall
that when a normal contact is sheared by a tangential force, which
is insufficient to cause failure, a region of microslip forms adja-
cent to the outer perimeter of the contact zone. By increasing the
tangential force this region moves inward and two surfaces slip
with respect to one another, while in the interior of the contact
surfaces remain stuck together. By further increasing the tangen-
tial force at which the failure occurs, there is no “stick” region in
the interior of the contact zone as illustrated in Fig. 4.

In Eq. �6�, Coulomb friction law can be employed to describe

Fig. 6 „a… The arrangement of the super-ball and the wall with some nomenclatures. „b… 3D
finite element mesh used in numerical treatments. Here, more than 6Ã104 hexahedral elements
were used. „c… The thrown superball at low speed having a clockwise spin. The initial velocity
components of the superball „before collision… were Vx=0.92 m/s, Vy=−0.24 m/s, and Vz=0.
Here, the surface of the ball is color coded using the local magnitude of Vy. „d… The incident of
the superball on the front side of the flat wall. The configuration was taken at the end of
approaching period when the normal pressure at the initial point of contact reached to the
maximum value. „e… The backwards spinning superball. Notice the spin reversal which is
clearly illustrated in „c… and „e…. In this simulation the back side of the wall was fixed.
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friction between two colliding grains with a surface friction coef-
ficient �. When there is mutual slipping at the point of contact,
�Fi

�jp�t� is calculated as necessary to satisfy �Fi
�jp�t�=� �Fi

�jp�n�. Oth-
erwise, the contact surfaces are considered as stuck while �Fi

�jp�t�
�� �Fi

�jp�n�.
Tangential forces induce torques on particle j, which is defined

as Ti
�j�=−
 j=1

Nj m� /2�ijkkj
�jp�Fk

�jp�t. Hence, Eq. �6� must be aug-
mented by a torque equation for the rotational motion of particle j
which can be written as

I�j�d	i
�j�

dt
= Ti

�j� �7�

A standard method for solving the ordinary differential Eqs. �6�
and �7� is the finite difference approach, through which by giving
the particle positions, velocities, and other dynamic information
such as impact forces at time t, the positions and velocities at a
later time t+�t are calculated to a sufficient degree of accuracy.
The equations can be solved on a step-by-step basis using the
Verlet algorithm �20�. The choice of the time interval �t will de-
pend on the values of the model parameters in Eq. �6�.

The contact parameter k�t� in Eq. �6� may be approximated by
k�t���4E /9�1−v2���1/2 �21�. However, the contribution of sur-
face roughness in rotational velocity damping must be estimated
by comparing the results of the finite-element model and those
obtained by solving Eqs. �6� and �7�. Applying the material prop-
erties used for collision cases as detailed in the preceding section,
Eqs. �6� and �7� were integrated using fourth- and fifth-order em-
bedded formulas from Dormand and Prince �22� with �t=3
�10−9 s. The initial conditions for Eqs. �6� and �7� are ��jp��0�
=0, ��jp��0�=0, �̇�jp��0�=0.1 m/s, and �̇�jp��0�=0.5 m/s. The cho-
sen value for K�n� was that suggested in Ref. �8�, namely 143.

The variations of 	z, Vx, Vy, �xx, and �xy with time are plotted
in Figs. 7 and 8 for the slipping and sticking motions, respectively.
The diamonds and the gradients represent the obtained results
using the finite-element model for the initially moving and the
initially stationary balls, respectively.

The coefficient K�n� in Eq. �6� was considered to be a fit param-
eter, due to the lack of information concerning the contribution of
surface roughness in rotational velocity damping. Choosing K�t�

�4.02�1014 1 /s, the variations of 	z, Vx, Vy, �xx, and �xy with
time are also plotted in Figs. 7 and 8 using solid lines, which may
be compared with the finite-element model results. As can be seen
from Fig. 7�d�, the agreement between the predicted results ob-
tained for the normal using two different models is quite satisfac-
tory. The maximum shear stress predicted by the simplified model
is almost twice as big as that predicted by the finite-element based
model. However, as can be seen from Fig. 4�c�, which represents
the results of the finite-element based model, the position of the
maximum shear stress is not exactly at the initial point of contact.
The agreement between the predictions of the two models appears
to be improved for the sticking motion as illustrated in Fig. 8�d�.
Generally speaking, no excellent agreement can be achieved be-
tween the predictions of the two models due to the complex be-
havior of shear stress predicted by the finite-element model as
illustrated in Figs. 4�c� and 5�c�.

Notice that attempts have been made to use a linear spring
dashpot contact law such as that discussed in Ref. �23�. However,
no satisfactory agreement could be reached between the results of
the finite-element based model and those obtained using the linear
model.

Hence, in this section by utilizing the results of the finite-
element based model, a simplified model was developed for accu-
rate and efficient granular-flow simulations. An advantage of the
simple model is an accurate description of interparticle forces dur-
ing multiparticle contacting. Interparticle forces determine impor-
tant physical and mechanical properties of the granular material,
which are essential for describing its transport and governing its

flow ability. Figure 9�a� shows the variations with time of x, y,
and z components, and the magnitude of contact force acting on
the darker particle, as depicted in Fig. 9�b�. Figure 9�a� reveals the
presence of very complex dynamics in a string of rough, vis-
coelastic particles which could result in the formation of the an-
isotropic, nonstraight, force chains, even in a partially ordered
phase for which jamming could occur. It is worth noting that the
lifetime of the chain of particles as illustrated in Fig. 9�a�, is quite
long time compared to a typical binary collision time of tc,binary
10−6 s. This kind of contact may be termed a long rubbing
contact. In this case, particle diameter was �=1.9 mm, and the
physical properties were those listed in Table 1. In addition, the
coefficient of friction was set to �=0.8.

3 Validation of the Simplifed Model
Cohesionless grains in a spinning bucket exhibit interesting

flow dynamics, such as the existence of solid-like and fluid-like
qualities side by side, which may result in the formation of circu-
lar kinks on the surface of the granular material �24�. Although the

Fig. 7 „a… The computed angular velocities, �z, versus time for
the colliding balls. The diamonds and the gradients represent
the results of finite element based model for the initially mov-
ing and the initially stationary balls, respectively. The solid
lines are the obtained results using the simplified model. As
expected, the angular velocity of the identical balls at the end
of restitution period is equal to each other. „b… The computed
normal velocities, Vx, versus time for the colliding balls. The
diamonds, the gradients and the solid lines have the same
meaning as those in „a…. „c… The computed tangential velocities,
Vy, versus time for the colliding balls. The diamonds, the
gradients and the solid lines have the same meaning as those
in „a…. „d… Variations of the normal stress, �xx, and the shear
stress, �xy, at the point of initial contact with time for the
initially moving ball. The diamonds and the gradients represent
the normal and the shear stresses, respectively, obtained using
the finite element based model. The lower solid line represents
the predictions of the simplified model for the normal stress of
the point of contact on the surface of the initially moving ball.
The agreement between the results of two models is quite sat-
isfactory. The upper line represents the predictions of the sim-
plified model for the shear stress at the point of contact. The
maximum shear stress predicted by the simplified model is al-
most twice as big as that predicted by the finite element based
model. However, as can be seen from Fig. 4„b…, the position of
the maximum shear stress calculated using the finite element
based model is not at the initial point of contact.
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slowly evolving surface shape of a bucket of sand experiencing
vertical spinning motion at a fixed rotation rate cannot be com-
pletely explained using the Coulomb yield condition �25�, the for-
mation of circular kinks, whose radius was reported in Yoon, et al.
�24� to be a function of the spinning speed and the tilting angle,
remains a mystery. Several researchers �24–26� have proposed
theories for the prediction of grain dynamic behavior in a spinning
bucket.

In this section, granular flows are studied by means of molecu-
lar dynamics simulations in a vertical bucket of sand, rotating
around its cylindrical axis at rotational frequencies higher than
50 1/s. The aim is to assess the simplified model developed in the
preceding section to predict phenomena such as the observed
steep depression �25� around the center of a vertical bucket of
sand rotating around its cylindrical axis at high rotational frequen-
cies, namely 100 1/s. To this end, more than 60,000 identical,
slightly overlapping, spherical particles with diameter �
=1.9 mm were placed randomly in the cylindrical, computational
box, as illustrated in Fig. 10. The side and bottom walls of the
bucket were spinning at 	0=100ez 1/s. The initial velocities of
each particle in the x, y, and z direction are assigned with a mag-
nitude according to a profile V=−	0�xex+yey�−ez m/s, plus a
small random number uniformly distributed over the interval
�−0.0025, +0.0025� m/s.

The friction is represented by a restoring force characterized by
�, whose value is set to 0.6. This force counteracts mutual sliding
motion at contact. The material properties of particles are listed in
Table 1. In order to simulate multiple-particle collisions such as
that shown in Fig. 9 satisfactorily, the value of time step �t was set
to 5�10−9 s.

In the experiments �25� a cylindrical container was used, made
of polyvinyl chloride �PVC� plastic with density, Young modulus,
and Poisson’s ratio, and given as 
=1400 kg/m3, E=3.4
�109 Pa, v=0.33, respectively. The roughness of the wall is
much smaller than the particles diameter, which is on the order of
millimeters. Hence, a simplified representation of the relevant as-
pects of the particle wall contacts is chosen, hoping that detailed
comparisons between simulations and experiments can then be
used to establish the quality of the approximation. The interaction
between the particles and the surface is described by a simple
friction law, in which the coefficient of friction is a constant set to
�w=0.8.

The particle–wall frictional interaction will likely perturb the
flow field. In fact, by decreasing the particle-to-wall friction the

Fig. 8 „a… The computed angular velocities, �z, versus time for
the colliding balls. The diamonds and the gradients represent
the results of finite element based model for the initially mov-
ing and the initially stationary balls, respectively. The solid
lines are the obtained results using the simplified model. As
expected, the angular velocity of the identical balls at the end
of restitution period is equal to each other. „b… The computed
normal velocities, Vx, versus time for the colliding balls. The
diamonds, the gradients and the solid lines have the same
meaning as those in „a…. „c… The computed tangential velocities,
Vy, versus time for the colliding balls. The diamonds, the
gradients and the solid lines have the same meaning as those
in „a…. „d… Variations of the normal stress, �xx, and the shear
stress, �xy, at the point of initial contact with time for the
initially moving ball. The diamonds and the gradients represent
the normal and the shear stresses, respectively, obtained using
the finite element based model. The lower solid line represents
the predictions of the simplified model for the normal stress of
the point of contact on the surface of the initially moving ball.
The upper line represents the predictions of the simplified
model for the shear stress at the point of contact.

Fig. 9 „a… Time series of x, y, and z components of impact
force, represented by diamonds, squares, and circles, respec-
tively. As well as the magnitude of impact force on the darker
particle, depicted in „b…, the magnitude of impact force is
shown with a solid line. „b… Closeup of a cluster of ten particles.
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particle wall contact increases, leading to denser and more ordered
structures in the wall region. On the other hand, by increasing
particle-to-wall friction ordering can be delayed �27�, which af-
fects the ability of the particle to slide on the walls. Thus an
important question is the degree to which the present model is
able to reproduce the effects of the wall friction on the bulk flow
field. Here, the above-mentioned value of �w is chosen for the
simulations with the anticipation of inhibiting sliding motion.

The normal elastic constants between particles, a flat bottom
wall, k�n�iw, and cylindrical side walls, k�n�ic, are calculated using
expressions presented below, for Hertzian contacts. They are

k�n�iw =
8

15

1

m�1 − �p
2

Ep
+

1 − �w
2

Ew
	�

�

2
�8�

and

k�n�ic =
8

15

��1 + �2�1/2

m�1 − �p
2

�Ep
+

1 − �w
2

�Ew
	�2

�

��
0

�
d�

���1 + ���1 + �����3/2

�9�

The parameter k�t�w in tangential force model is set to 2/3k�n�iw,
and an arbitrary but reasonable value is chosen for the viscous

damping constant, k�n�w =100. Due to lack of information, no con-
tribution of surface roughness in rotational velocity damping is
assumed during the particle–wall interaction.

The equations of motion presented in this section are solved
using the Verlet algorithm �5�, with a time step of �t=5�10−9 s.
In the present simulations, the values of normal elastic constant
are large enough to avoid grain interpenetration, and the time step
�t� tc,binary /100 is small enough to assure an accurate simulation.
In addition, regardless of momentum exchanged between the par-
ticle and the wall, the rotational rate of the bucket is assumed to
be constant

In the present attempt, two-fifths of a spinning bucket of radius
R=0.0516 m and height L=0.15 m is initially filled with mono-
sized, rough, viscoelastic, spherical, glass particles. The apparent
density of the system was 1155 kg/m3. The free surface, located
at z0�7.5 cm, was nearly flat, as illustrated in Fig. 11�a�, before
the spinning begins.

Figure 11�b� represents the configuration of glass balls in the
bucket rotating at rate of rotation of 	0=100 1/s, after five com-
plete rotations. Figure 11�c� illustrates the time smoothing of the
volume-averaged solids fraction. In order to obtain the local de-
scription of solids fraction, first the bucket is divided into an ap-
propriate number of sampling volume using criteria given in Ref.
�28�. Then, the local values are calculated as averages over the
particles whose instantaneous configurations are illustrated in Fig.
11�d�. Finally, the timesmoothing is carried out by averaging 500
configurations each separated by t=10−5 s. As it can be seen, the
free surface becomes curvy, but azimuthally symmetric with a
depression in the center of the bucket. The inset of Fig 11�d�
clearly shows the formation of a steep depression whose diameter
is about Dh=0.15 R.

The stress tensor for a system as illustrated in Fig. 11 may be
calculated as the sum over all particles i within a sampling volume
V, which is a sector of the cylinder, given by Allen and Tildesley
�5�. That is

P�� = −
1

V�
i
�

i
	 �10�

where �i=mi�Vi�− V̄���Vi�− V̄��+�i � j�i rij�Fij�.
If n is the unit outer normal to the side wall of the bucket, then

the normal stress acting on the sidewall is given by

Pn = P��n�n� �11�
Figure 11�e� represents the glass balls color coded with the

value of normal component of �i. Figure 11�f� illustrates contour
plots of the time smoothing of the volume-averaged value of the
normal component of, P��, which characterizes the granular pres-
sure. The results of simulations such as those shown in Figs. 11�c�
and 11�f� can be very useful in order to avoid arbitrary treatments
or unnecessary assumptions for developing a set of continuum
equations for granular flows in an intermediate regime.

Notice that by using �w=0.8, ordering was avoided in the wall
region as evidenced from Fig. 11�e�.

By setting the rotational rate of the bucket to 	0=50 1/s after
six complete rotations, a cusp in the central section was developed
as clearly depicted in Fig. 12�a�. The time-smoothing of the
volume-averaged value of the solids fraction is shown in Fig.
12�b�. The present results are in excellent agreement with the
observations reported in Ref. �25�. They provide the benchmark
for developing and testing theories for granular materials. The
details such as formation of a depression as illustrated in Fig. 11,
improve the resolution significantly compared to that reported in
Ref. �25�.

4 Conclusions and Outlook
In this and the previous parts �8� of this attempt, a methodology

based on a synergistic combination of experiments and simula-
tions was applied to improve the understanding of granular flows.

Fig. 10 A cutaway view of the spinning bucket. Note that grav-
ity acts in the negative z direction.
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A model was developed to describe granular flow dynamic behav-
ior in the intermediate regime where both collisional and frictional
interactions between particles may occur. For this case, experi-
ments were carried out to provide a general overview of impact
analysis of real glass balls.

A detailed simulation of frictional interactions between the
grains was provided by employing a three-dimensional �3D�
finite-element model. Numerical results were presented of slip-
ping, and sticking motions during a binary collision. The results of
this analysis were used in the development of a practical method-
ology for a large-scale, 3D, molecular dynamics type simulation
of dense granular material consisting of glass particles.

The model was applied to examine the continuous flow of

grains in a spinning bucket at rotational frequencies higher than
50 1/s. Formation of a steep depression with diameter of about
Dh=0.15R near the axis of rotation was predicted at rotation rate
of 100 L/s. In addition, at lower rate of rotation of 	0=50 1/s a
cusp in the central section of bucket was observed.

Based on the ability of the model to reproduce poorly under-
stood phenomena in complex granular systems, the present model
appears to represent a significant advance in state-of-the-art pre-
diction of granular flows. However, only a rather limited amount
of experimental data are available for model validation. Hence it
is recommended for performing additional measurements in
simple geometries useful for testing and for comparing theories of
granular materials.

One of the future challenges would be to develop a set of con-
tinuum equations for further exploration of dynamics of granular
flows in an intermediate regime where both collisional and fric-
tional interactions between particles should be taken into account.
The results of simulations presented in this part would be of use in
order to avoid arbitrary treatments or unnecessary assumptions in
future theoretical investigations. Recall that the current under-
standing of the dynamics of granular flows comes from two rather
disjointed models, namely continuum models such as those used
in soil mechanics, and kinetic theory models. Therefore, a future
attempt is directed at providing greater insight toward the expla-
nation of poorly understood hydrodynamic phenomena in the field
of granular flows.

Nomenclature
Aseg � area of contact segment

b � decay constant
d � initial distance of super ball from the wall

Dh � size of depression
�ex ,ey ,ez� � unit vectors in the x, y, and z direction

Fig. 11 „a… Initial configuration of the spherical balls with a flat
free surface before the spinning begins. „b… Configuration of
the spherical balls after five complete rotations at the rate of
�0=100 1/s. „c… Contour plot of the time smoothing of the vol-
ume averaged solids after five complete rotations of the
bucket. „d… A typical instantaneous configuration of spherical
balls in a cutaway view of the spinning bucket after several
rotations at the rate of �0=100 1/s. To provide a clear picture of
depression the central part of the bucket is magnified in the
inset. Notice that the diameter of identical particles is much
smaller than that shown in the inset. „e… An instantaneous con-
figuration of the spherical balls. The balls are color coded us-
ing the local value of the normal component of �. „f… Time
smoothing of the volume averaged of normal component of
P��. „Inset… Time smoothing of the volume averaged of normal
component of P�� in the central part of bucket using a finer
scale.

Fig. 12 „a… A typical instantaneous configuration of spherical
balls in a cutaway view of the spinning bucket after several
rotations at the rate of �0=50 1/s. Notice the formation of a
cusp in the central region. „b… Contour plot of the time-
smoothing of the volume averaged solids after six complete
rotations of the bucket at the rate of �0=50 1/s.
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e�n� � normal coefficient of restitution
e�t� � tangential coefficient of restitution

E � Young modulus
Fn

�f�
� friction force at time tn

Fn
�N�

� normal force at time tn
F�t� � trial value of interface force

Fi
�jp�

� force per unit mass acting on particle j

Fi
�jp�n � normal force per unit mass acting on particle j

Fi
�jp�t � tangential force per unit mass acting on par-

ticle j
G0 � instantaneous �glassy� shear modulus
G� � long time shear modulus

g � acceleration due to gravity

gp
�ij�

� �indicial rotation� relative velocity vector at the
point of initial contact for a pair particles i and
j

h � dimensionless vertical distances �h=z /2R�
I�j� � moment of inertia

J � �vector notation� impulsive force
Jq � �indicial notation� impulsive force
kn � �indicial notation� unit vector directed from the

center of particle i to the center of particle j at
impact defined as kn=rn

�ij� /� with r�ij�=r�j�−r�i�

as depicted in Fig. 3�a�
K � bulk modulus
K � gyration radius

K�t� � parameter which characterizes the contribution
of surface roughness in rotational velocity
damping

K�n�w � damping rotational velocity parameter for walls
k � contact stiffness �k=0.1Aseg K /Vseg�

k�t� � contact parameter
k�t�w � contact parameter for walls
k�n�ic � normal elastic constant between the particles

and the cylindrical side walls
k�n�iw � normal elastic constant between the particles

and the base of bucket
L � height of bucket
m � mass of particle
Nj � number of particles in contact with particle j at

time t
n � �vector notation� unit outer normal to the side

walls of the bucket
P�� � mean stress tensor for the particle phase

R � radius of bucket
r � radial distances

r�ij� � the line of centers of the ith and the jth
spheres �vector notation�

Ti
�j�

� �indicial notation� torque on sphere j
t � time

tw � wall thickness
tc,binary � typical collision time of a binary collision

tcol � collision time
V�n� � magnitude of normal impact velocity
Vi

�j�
� �indicial notation� velocity of the center of

mass of sphere j
Vi

�jp�
� �indicial notation� relative velocity of the cen-

ter of mass of spheres j and p �Vi
�jp�=Vi

�j�

−Vi
�p��

V � sampling volume
Vseg � volume of segments on solid element

Vx � x component of the velocity vector
Vy � y component of the velocity vector
Vz � z component of the velocity vector

V � initial velocity of particles in the bucket
x � distances in the x direction
y � distances in the y direction
z � distances in the z direction

z0 � initial location of free surface

Greek Symbols
� � reciprocal of relaxation time
� � tangential displacement

�e � movement of slave nodes
�iz � Kronecker delta
�t � time step

�imn � alternating tensor
�1 � elliptic integral given as

�1=�0
�d� /���1+��3�1+����

�2 � elliptic integral given as

�2=�0
�d� /���1+���1+��3��

� � boundary of a sphere
� � particle stress tensor �defined in Eq. �10��
� � coefficient of friction

�s � static coefficient of friction
�d � dynamic coefficient of friction
�w � coefficient of wall friction
�� � ���=�s−�d�

� � Poission’s ratio
�t � time step size ��t= tn+1− tn�

s � particle material density
� � particle diameter

�xx � normal stress
�xy � shear stress
�eff � effective stress

	m
�j�

� �indicial notation� spin velocity vector of
spheres j

	0 � rate of rotation of bucket of sand
	z � spin velocity in z direction

� � dimensionless radial position ��=r /R�

Superscripts
prime � post-collisional value

overbar � mean values
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Kinking of Transversal Interface
Cracks Between Fiber and Matrix
Under loads normal to the direction of the fibers, composites suffer failures that are
known as matrix or interfiber failures, typically involving interface cracks between matrix
and fibers, the coalescence of which originates macrocracks in the composite. The pur-
pose of this paper is to develop a micromechanical model, using the boundary element
method, to generate information aiming to explain and support the mechanism of appear-
ance and propagation of the damage. To this end, a single fiber surrounded by the matrix
and with a partial debonding is studied. It has been found that under uniaxial loading
transversal to the fibers direction the most significant phenomena appear for semideb-
onding angles in the interval between 60 deg and 70 deg. After this interval the growth of
the crack along the interface is stable (energy release rate (ERR) decreasing) in pure
Mode II, whereas it is plausibly unstable in mixed mode (dominated by Mode I for
semidebondings smaller than 30 deg) until it reaches the interval. At this interval the
direction of maximum circumferential stress at the neighborhood of the crack tip is
approximately normal to the applied load. If a crack corresponding to a debonding in this
interval leaves the interface and penetrates into the matrix then: (a) the growth through
the matrix is unstable in pure Mode I; (b) the value of the ERR reaches a maximum (in
comparison with other debonding angles); and (c) the ERR is greater than that released
if the crack continued growing along the interface. All this suggests that it is in this
interval of semidebondings �60–70 deg� that conditions are most appropriate for an
interface crack to kink. Experiments developed by the authors show an excellent agree-
ment between the predictions generated in this paper and the evolution of the damage in
an actual composite. �DOI: 10.1115/1.2711220�

Keywords: composites, matrix failure, fiber-matrix debonding, interface crack, kinked
crack, boundary element method

1 Introduction
Failure criteria of fibrous composites are still an open matter. A

world wide failure exercise has been recently carried out �1,2� to
validate the predictions of several approaches over different lami-
nates. A point of significant difference in the predictions of failure
is that associated with the failure in the matrix also referenced as
interfiber failure, Hashin and Rotem �3� being the first to give a
differentiating character to this type of failure. Although the major
field of application of composites is that in which there is a pre-
dominant direction of loading, it is obvious that in general one
lamina of a laminate will also have to suffer external actions origi-
nating stresses perpendicular to the fibers, these stresses then be-
ing capable of producing a matrix dominated failure.

The mechanism of damage of this failure can be quite well
described, particularly under tension loads, by the appearance of
interface cracks growing between fiber and matrix which under
certain conditions leave the interface and penetrate into the ma-
trix, generating the coalescence of these interface cracks and giv-
ing rise to a macrocrack that is associated to the failure of the
lamina under consideration. This is perfectly illustrated by Fig. 1
�4�, where the interface cracks can be clearly observed.

The problem of an elastic circular �in two dimension �2D�� or
cylindrical �in 3D� inclusion embedded in an elastic matrix with a
partial debond at their interface �modeled like an interface crack�
subjected to a uniaxial tension at infinity, perpendicular to the
debond, has received considerable attention in the past. For the
sake of brevity, only a few of these works, which are closely
related to the objectives of the present work, will be cited.

In analytical works based on an application of the Kolosov–
Muskhelisvili complex potentials to solve the planar problem of
partially debonded circular inclusion, faces of the interface crack
were assumed to be traction free according to the open model of
interface cracks introduced by Williams �5�. Developing the pio-
neering works of England �6� and Perlman and Sih �7�, Toya �8�
established, in his remarkable contribution, a theoretical basis for
any other analysis of this problem. Toya deduced an analytical
expression of the total energy release rate �ERR� as a function of
the debond angle and applied it in a fracture criterion to assess the
debond growth along the interface. Toya also proposed a strength
based criterion for competition between a debond extent and a
kink out of the interface, the kink angle having been determined
by the maximum circumferential stress �MCS� criterion. It is
worth mentioning that Toya’s strength criterion for an interface
crack extent can be considered equivalent to the following simple
ERR based criterion currently used �9�, Gint=Gc

int=G1c
int�1

+tan2 �K�, where the critical value of ERR depends on the frac-
ture mode mixity given by the phase angle �K �see Sec. 2 for
notation used�.

Zhang et al. �10� presented experimental results for transverse
single-fiber specimens, and Varna et al. �11� studied the measured
debond growth along the interface modifying Toya’s �8� ERR
based fracture criterion in order to take into account increasing
participation of the shear fracture mode when the debond grows.
Varna et al. �11� assumed a linear variation of the critical ERR
value with the debond angle up to a maximum angle with a neg-
ligible contact zone at the crack tip and a constant critical ERR for
larger debonding angles.

Recently, Prasad and Simha �12� applied the complex potentials
theory, assuming the open model of interface cracks, to compute
the two components of the complex stress intensity factor �SIF� as
functions of the debond angle, and also to apply the MCS criterion
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for interface crack predictions. Nevertheless, they did not specify
the corresponding small reference distances to the crack tip �in
SIF evaluation and the MCS criterion application� which are cru-
cial for the interpretation of the open model results due to the
oscillatory character of the near-tip elastic solution.

Chao and Laws �13� extended the Comninou �14� formulation
of the contact model of interface cracks, which assumes a near-tip
contact zone, to circular arc interface cracks. According to their
numerical parametric study the extent of the near-tip contact zone
can be regarded as approximately independent of the Dundurs
parameter � under assumption of an inclusion more rigid than the
matrix.

París et al. �15� and Varna et al. �16� compared different aspects
of Toya’s �8� solution and the elastic solution obtained by bound-
ary element method �BEM� using a contact algorithm, noticeable
differences between these two solutions �e.g., in relative opening
displacements, radial stresses in the near-tip bonded zone, and in
the total ERR� being observed for semidebonding angles greater
than 60 deg where a physically relevant near-tip contact zone ap-
pears due to a change in the relative orientation of the crack tip
with respect to the remote load. Thus, the limited scope of the
Toya’s �8� work to small debonds is fundamentally associated
with the appearance of this near-tip contact zone starting from
semidebonding angles of about 60 deg. Varna et al. �11� neverthe-
less used Toya’s results to estimate the critical value of ERR as-
sociated with the shear fracture mode of fiber–matrix debonds
with semidebond angles over 60 deg, not considering the contri-
bution of the opening mode.

The purpose of this paper is to generate more knowledge about
the conditions under which the cracks at micromechanical level,
under macrotensile stresses, first grow along the interface and then
kink into the matrix. To this end a numerical model based on
BEM �17� is generated, involving one long fiber with a debonding
embedded into a large matrix. This model is the base to reproduce
the mechanism of failure represented in Fig. 1. The model allows
separation of the lips of the cracks to occur as well as contact
between the debonded lips of the cracks. When a contact zone is
detected, the frictionless case is assumed based on the following
considerations. First, when the damage is reduced to a crack be-
tween the fiber and the matrix it will be shown that the significant
phenomena take place for semidebonding angles up to the interval
between 60 deg and 70 deg. For semidebondings of this level the
contact zone is very small and the contribution of frictional dissi-
pation of energy can be assumed to be negligible in view of the
objective of the present work. This is in accordance with the ob-
servations of Varna et al. �16� that the presence of friction does not
alter the problem qualitatively. Second, when the damage is en-
visaged by a kinked crack, daughter of the interface crack, it will

be shown that the lips of the kinked crack run into the matrix
along the direction suitable for working in Mode I, which will
prevent the appearance of a contact zone.

Focusing attention on damage originated at long fibers embed-
ded into the matrix and taking into account that experimentally
observed debonds, e.g., by Zhang et al. �10�, are typically much
larger in the axial direction than in the arc direction, the plane
strain state in linear elastic formulation is assumed in the present
work. The present fracture problems are characterized by the ERR
of a crack running along the interface or kinking and penetrating
into the matrix.

It has been considered necessary to include a concise review of
the results and notation of the interface fracture mechanics used in
the present analysis of fiber matrix interface crack propagation in
order to make the paper self-contained, this review being per-
formed in Sec. 2. The configurations of the two problems consid-
ered, interface crack and kinked crack, are presented in Sec. 3.
The fiber–matrix interface crack is studied, in terms of the ERR,
fracture mode mixity, and fracture criterion in Sec. 4. The stress
state at the neighborhood of the fiber–matrix interface crack tip is
studied, in order to predict the kinking of the interface crack, in
Sec. 5 using the BEM solution. The study of the ERR of the
kinked crack is carried out in Sec. 6. The conclusions are finally
presented in Sec. 7.

2 Models and Crack Propagation Criteria of the Inter-
face Fracture Mechanics

The two principal models of interface cracks typically used in
their analysis and growth predictions, hereinafter referred to as
open model and frictionless contact model, are briefly reviewed.
In the open model �5� the interface crack is assumed to be open
�with usually traction free crack faces� whereas in the contact
model �14� the faces are assumed to be in contact near the crack
tip under the load application. The reason for employing these two
models is that, as will be seen, neither of them is free of incon-
sistencies and/or difficulties in its application. There are situations
where only one of these models is adequate. However, there are
also cases, like that considered in the present study, where both
models are required along the fracture process that appears in the
problem. In particular, in the present study a switch from the open
model to the contact model is required when analyzing the growth
of the fiber–matrix debonding. The approaches based on the SIF
and ERR concepts can be applied to both models and are intro-
duced in what follows. Finally, some growth criteria for propaga-
tion along the interface and for possible kinking out of it will be
introduced.

Let us first of all introduce briefly the notation and some defi-
nitions valid for both models. Consider two homogeneous isotro-
pic linear elastic materials �denoted 1 and 2�, which are perfectly
bonded along a surface except for a debonding region referred to
as interface crack, subjected to the plane strain state. In the
present analysis of the near-tip singular elastic field the interface
is considered to be locally flat at the crack tip, which is justified
due to an analysis of circular interface cracks by England �6� and
Toya �8�, and curved ones by Yuan and Yang �18�. Let the local
Cartesian system �x ,y� and polar coordinate system �r ,�� be de-
fined at the crack tip as shown in Fig. 2. Let Ek and �k denote
Young elasticity modulus and Poisson ratio, respectively, of ma-
terial k=1,2. The Dundurs bimaterial mismatch parameters � and
� are defined as

� =
�1��2 + 1� − �2��1 + 1�
�1��2 + 1� + �2��1 + 1�

=
E1� − E2�

E1� + E2�

and

Fig. 1 Debonding cracks in a fibrous composite material un-
der transversal loading
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� =
�1��2 − 1� − �2��1 − 1�
�1��2 + 1� + �2��1 + 1�

�1�

where �k=Ek /2�1+�k� is the shear modulus; �k=3−4�k is the
Kolosov’s constant; and Ek�=Ek / �1−�k

2� is the effective elasticity
modulus in plane strain.

Finally, the parameter � �typically called oscillatory index due
to its relevant role in the open model� is used in expressions of
both open and contact models

� =
1

2	
ln

1 − �

1 + �
�2�

Note that �� � 
1, �� � 
0.5, and �� � 
 ln 3 /2	=0.175.

2.1 Near-Tip Solution of the Open Model. Starting from
Williams �5� asymptotic expansion, near-tip singular tractions act-
ing along the bonded part of the interface and near-tip relative
displacement of crack faces, �ui�r�=ui�r ,�=	�−ui�r ,�=−	� are,
respectively, approximated for r→0 �r being the distance from
the tip� by

�yy�r,0� + i�xy�r,0� =
K�r/l�i�

�2	r
�3�

�uy�r� + i�ux�r� =
8

1 + 2i�

K�r/l�i�

cosh�	��E*� r

2	
�4�

where i is the imaginary unit; K=K1+ iK2 is the complex SIF; l is
a reference length scale introduced by Rice �19�; and E* is the
harmonic mean of the effective Young moduli

1

E* =
1

2
� 1

E1�
+

1

E2�
� �5�

The term �r / l�i�=cos�� ln r / l�+ i sin�� ln r / l�, for ��0 and
equivalently ��0, is responsible for an oscillatory behavior �in-
cluding sign changes� in each traction and relative displacements
component superimposed over the well-known square root behav-
ior of these components when r→0. Due to these oscillations in
relative displacements, interpenetrations between crack faces are
predicted by this solution in a zone close to the crack tip �20,21�.
Let ri denote the distance of the first interpenetration from the
crack tip. Associated with these oscillations in interface tractions,
unbounded normal �tensional and compressive�, and shear stresses
are predicted close to the crack tip independently of the problem
configuration, in particular of the far-field load applied. Therefore,
SIF components K1 and K2, respectively, are not associated with
pure opening and shear fracture modes, and consequently no sepa-
ration of fracture modes is possible here.

Define rp as the extent of the nonlinear zone, including plastic
and fracture process zones, i.e., the zone subjected to very high

loads where the fracture process takes place �material separation
occurs�, and where the elastic solution cannot be regarded as a
realistic description of the stress state �22�. In practice, the pre-
dicted zones of crack face interpenetrations and traction oscilla-
tions can be frequently considered to be physically nonrelevant, ri
being smaller than rp, it being quite typical that ri is of an atomic
size. The concept of small-scale contact �SSC�, introduced by
Rice �19� to characterize such situations, provides the theoretical
base for application of the open model to interface crack predic-
tions. From a practical point of view, following Rice �19�, SSC
conditions are associated with situations where ri is less than 1%
of the smallest characteristic length of the problem, e.g., the crack
length.

The fracture mode mixity is �in both SIF and ERR approaches�
a crucial question to address. One measure of fracture mode mix-
ity, based on the SIF concept, is given by the local phase angle �K
�−	
�K
	� defined by K= �K �ei�K or equivalently, in view of
Eqs. �3� and �4�, by

�K = arg K = arg��yy�l,0� + i�xy�l,0�� = arg��uy�l� + i�ux�l��

+ arctan�2�� �6�

where arg is the argument function of a complex number and a
sufficiently small length l is considered. Note that �K� is indepen-
dent of l, whereas according to Eq. �6� �K is an l-dependent mea-
sure of fracture mode mixity. Thus, values of �K should always be
provided with the associated reference length l. According to Rice
�19�, �K has only a weak dependence on l for many real bimate-
rials characterized by a small value of �.

The singular oscillatory term in the asymptotic expansion of the
near tip stresses can be expressed as

�ij�r,�� =
1

�2	r
	Re�K�r/l�i���ij

I ��,�� + Im�K�r/l�i���ij
II��,��


− 	 
 � 
 	 �7�

where the universal dimensionless functions �ij
m �m= I , II� were

presented by Rice et al. �23� in polar coordinates.
With reference to the ERR approach, the virtual crack closure

method by Irwin �24� when applied to an interface crack consid-
ering a small but finite length �a of a virtual crack extension
along the interface, gives the total specific available energy, called
ERR, associated with this crack extension �see Sun and Jih �25�,
Raju et al. �26�, and Toya �27��

Gint��a� = GI
int��a� + GII

int��a� �8�

where Mode I and II components GI
int��a� and GII

int��a�, respec-
tively, correspond to energy released by normal stresses acting
through crack opening displacements and shear stresses acting
through crack face sliding displacements at the interface crack

GI
int��a� =

1

2�a�0

�a

�y�r,0��uy��a − r�dr �9�

GII
int��a� =

1

2�a�0

�a

�xy�r,0��ux��a − r�dr �10�

It has to be mentioned that although formally the values of the
stresses and displacements in Eqs. �9� and �10� correspond to two
different configurations �original length of the crack for the
stresses and this length plus �a for the displacements�, both sets
of values can be taken, originating no noticeable differences in the
ERR for sufficiently small �a, from the original configuration of
the crack, taking stresses and displacements from the opposite
sides of the crack tip. This will be the procedure followed in this

Fig. 2 Local coordinate systems at the interface crack tip
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paper.
Whereas the total ERR Gint associated with an infinitesimal

virtual crack extension can be written in terms of K as �Malyshev
and Salganik �28��

Gint = lim
�a→0

Gint��a� =
�K�2

cosh2�	��E* �11�

the components of ERR GI,II
int ��a� oscillate as functions of �a, due

to the oscillatory character of the near-tip elastic field, and conse-
quently their limit does not exist as �a→0. Analyzing a result by
Toya �27�, Mantič and París �29� showed that

GI,II
int ��a� = 0.5Gint�1 ± F���cos	2��K + �0��a/l,���
� �12�

where the amplitude function F��� and the phase shift angle
�0��a / l ,�� can be evaluated using the following series expan-
sions

F��� = 1 + �	2/3 − 2��2 + O��4�

and

�0��a/l,�� = � ln �a/4el + ��3� + 4/3��3 + O��5� �13�

�3�=1.202 being the Apéry’s constant and e=2.718 being the
base of the natural logarithm. The particular value of ratio �a / l
for which the phase shift �0 vanishes is quite independent of �,
such values of �a / l being placed between 10.1169 �for �� �
=0.175� and 10.8731 �for ��0�.

A consequence of oscillations in GI,II
int ��a� is that the energetic

phase angle �G �0
�G
	 /2� defined as

tan2 �G =
GII

int��a�
GI

int��a�

or equivalently

cos 2�G =
GI

int��a� − GII
int��a�

Gint��a�
�14�

represents a �a-dependent measure of fracture mode mixity. Thus,
values of �G should always be provided with the associated length
of the virtual crack extension �a. Notice that when �=0 then
�G= ��K�.

The following fundamental relation �29� between �K and �G,
defined in Eqs. �6� and �14�, respectively, can be obtained by
substituting Eq. �12� into Eq. �14�

cos 2�G = F���cos�2��K + �0�� �15�

which implies that

�G = 0.5 arccos	F���cos�2��k + �0��


and

�K� = 0.5 arccos�F���−1cos�2�G�� �16�

where �K� = ��K+�0+n	�, n being an integer number �usually n
=0, ±1� giving 0
�K� 
	 /2. For small values of �, values of �K�
are closely approximated by values of �G except for �K� very close
to 0 or 	 /2.

2.2 Near-Tip Solution of the Contact Model. The problems
already mentioned associated with the open model suggest the
possible presence of a contact zone between the lips of an inter-
face crack near the crack tip. Thus, instead of an infinite number
of zones where crack face overlapping occurs in the open model
at the crack tip, for ��0, one connected near-tip contact zone
appears in this model �14�, the extent of this contact zone being
denoted as rc. Due to the presence of a near-tip contact, no frac-
ture Mode I SIF arises, the interface crack growing in Mode II
exclusively. Thus, the near-tip singular state is uniparametric, be-
ing governed by one multiplicative constant represented by the

fracture Mode II SIF: KII
C �C referring to the Comninou contact

model�. Hence, for a particular bimaterial, relations between val-
ues of singular stresses are independent of the far-field load.

According to Comninou �14� near-tip singular tractions and the
near-tip relative displacement of crack faces, respectively, are ap-
proximated for r→0 by

�xy�r,0� =
KII

C

�2	r
, �y�r, ± 	� = −

�KII
C

�2	r
�17�

�ux�r� =
8KII

C

cosh2�	��E*� r

2	
�18�

A crucial consequence of the inequality in Eq. �17�, implied by
a requirement of near-tip compressive stresses between crack
faces, is that

�KII
C � 0

and considering also Eq. �18�

��ux�r� � 0 for r → 0 �19�
Thus the sign of both the SIF and the allowed direction of the

near-tip relative slip depends only on �, being independent of the
far-field load direction. When the global imposed shear loading
agrees with this intrinsically allowed slip direction, a relatively
large near-tip contact zone may occur. However, when the applied
global load tends to originate slip opposite to the allowed near-tip
slip direction, only an extremely small contact zone, typically of
subatomic size, is predicted at this tip. Thus, in the latter configu-
ration no near-tip contact zone would be observable in experi-
ments, the �locally� open model being adequate for analysis and
predictions of crack behavior in this case.

The singular term in the asymptotic expansion of the near-tip
stresses can be expressed as

�ij�r,�� =
KII

C

�2	r
�ij

C��,��, − 	 
 � 
 	 �20�

where the universal dimensionless functions �ij
C were presented by

Comninou �14� in polar coordinates.
Starting from Eqs. �8�, �9�, and �10� �which are obviously valid

in the contact model�, taking into account that due to the near-tip
contact GI

int,C��a�=0 for any sufficiently small �a, and applying
the first expression in Eq. �17� and Eq. �18�, the total ERR Gint,C

associated with an infinitesimal virtual crack extension can be
written in terms of KII

C as �14�

Gint,C = lim
�a→0

Gint,C��a� = lim
�a→0

GII
int,C��a� =

�KII
C�2

cosh2�	��E*

�21�

2.3 Notes on Application of the Interface Crack Models.
Although the solution of the contact model, as opposed to the
open model solution, is strictly and locally speaking the unique
physically correct solution �within the context of linear elasticity�
of the interface crack problem regardless of the geometry and the
loading conditions, this model is nevertheless not always adequate
to characterize fracture. The adequacy of the contact model to
characterize an interface crack growth basically depends on the
relation between the near-tip contact zone extent rc �note that rc is
typically of the same order and slightly smaller than the extent of
the zone of crack face overlapping in the open model ri� and the
nonlinear zone size rp �19,30�.

SSC conditions are applicable to a situation where rc is suffi-
ciently smaller than rp. Then the open model and the contact
model solutions approximately coincide outside the nonlinear
zone, and the near-tip singular solution of the open model contains
all the relevant information to characterize the fracture process.
Thus, the singular term of the open model solution, governed by
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K=K1+ iK2, is suitable for representing a fracture mode mixity at
the crack tip under SSC conditions. By contrast, the singular term
of the contact solution, which is governed by only one real pa-
rameter KII

C, is not able to represent any fracture mode mixity,
other asymptotically nonsingular terms contributing significantly
to the solution value at small but physically relevant distances
from the crack tip in the contact model �see e.g., Aravas and
Sharma �31��. Finally, note that under SSC conditions �K � KII

C

and equivalent by GintGint,C.
On other hand, when rc is significantly larger than rp, the open

model solution and the contact solution differ significantly outside
the nonlinear zone, only the contact solution being able to provide
useful information relevant to the process of fracture in the shear
mode present at the crack tip. Thus, in such situations the contact
model is the appropriate one to analyze and predict interface crack
growth.

Therefore, in a general practical numerical procedure for inter-
face crack analysis both models must be taken into account. The
open model would be of application when SSC conditions hold,
otherwise the contact model is applied. Both models, following
this rule, will be used in the analysis carried out in this paper.

2.4 Fracture Path Selection: Criteria for Interface Crack
Growth and Kinking. Consider a stationary interface crack sub-
jected to a load. This crack may grow by its further extension
along the interface or kink out of the interface. The minimum
value of the total ERR Gint �or Gint,C� that originates an interface
decohesion is called critical interface ERR and is denoted as Gc

int

�in the open model assuming SSC conditions�, or Gc
int,C �in the

contact model assuming a relevant near-tip contact zone�. It is
believed that the cracking path is defined by the local singular
stress state at the parent crack tip and by the relation between the
critical ERR of the interface and of the material toward which the
kink is directed Gc

kink.
The competition between interface crack extension and kinking

�assuming Mode I propagation after kink� can be formulated on
the energetic basis comparing ratios of the corresponding ERRs
associated with a load level, Gint �or Gint,C� and Gkink, and the
critical ERRs for extension and kinking �32�

Gint

Gc
int �

Gkink

Gc
kink ⇒ extension,

Gint

Gc
int �

Gkink

Gc
kink ⇒ kink �22�

Note that Gkink corresponds to a kink angle �kink predicted by a
suitable criterion.

When Gc
int is relatively small in comparison with Gc

kink, the first
inequality in Eq. �22� implies that the interface crack may be
trapped at the interface and propagate along it either under SSC
conditions in mixed fracture mode �characterized by �K or �G, see
Eqs. �6� and �14�� or, in the presence of a physically relevant
near-tip contact zone, in pure shear mode.

In the latter case, a single value Gc
int is used, the criterion for

onset of an interface crack extension being expressed by inequal-
ity

Gint,C � Gc
int,C �23�

becoming an equality for quasi-static propagation.
In the former case �SSC conditions�, a strong dependence on

the mode mixity of Gc
int ��K� has been observed in extensive ex-

periments by Evans et al. �33�, Liechti and Chai �34�, Banks-Sills
and Askhenazi �9�, and others. Thus, �K �or �G� is an important
parameter governing interface crack growth under SSC condi-
tions. From several phenomenological laws for Gc

int ��K� sug-
gested in the past, the following family �35�, is considered to be
representative of a large number of bimaterial systems

Gc
int��K� = GIc

int�1 + tan2�1 − ���K� �24�

where GIc
int is the Mode I critical interface ERR �associated with

the minimum value of Gc
int ��K�� and � is a fracture mode-

sensitivity parameter, e.g., the typical range 0.2
�
0.3 charac-
terizes interfaces with moderately strong fracture mode depen-
dence. The interface fracture criterion is expressed now by
inequality

Gint � Gc
int��K� �25�

When Gc
int is relatively large in comparison with Gc

kink, the sec-
ond inequality in Eq. �22� implies that the interface crack will
kink out of the interface. It can be assumed that the kink angle
�kink is determined by the near-tip stress field of the parent inter-
face crack. Note that for application of Eq. �22�, a prediction of
�kink by a certain criterion is in fact required.

There are several classical criteria for �kink predictions, the
most simple and widely applied being the MCS criterion by Er-
dogan and Sih �36�. In comparison with the other popular criterion
of the maximum ERR �MERR�, discussed by the same authors,
which requires kink crack modeling; the MCS criterion requires
only knowledge of the near-tip stress solution of the parent inter-
face crack �either that given by Eq. �7� or by Eq. �20��, predicting
�kink in the direction where �� is maximized.

The difficulty with the application of the MCS or MERR crite-
ria to interface crack kinking predictions under SSC conditions at
the parent crack when ��0 is associated with the oscillatory
character of the singular near-tip solution for the parent crack in
the open model �see Eq. �7��. Due to this oscillatory character,
these criteria do not predict a unique value of �kink, different dis-
tances to the tip or kink lengths implying different �kink values
predicted by these criteria �see He and Hutchinson �32� and Geu-
belle and Knauss �37��. In particular, with reference to MERR
criterion, there is no limit of Gkink at a certain angle ��0 for
vanishing kink crack length. Thus, a characteristic distance to the
tip in the MCS criterion and a characteristic kink crack length in
MERR criterion for which these criteria are evaluated must be
specified. It should be stressed that although the MCS criterion is
applied for �kink prediction, the nonuniquely defined value of Gkink

at a certain angle � associated with an infinitesimal kink crack
makes an application of Eq. �22� difficult, an assumption of the
characteristic length of the kink crack being necessary.

Application of the MCS or MERR criteria to interface crack
kinking predictions in the presence of a physically relevant size of
the contact zone at the parent interface crack tip is simplified due
to the nonoscillatory and uniparametric character of the singular
near-tip solution of the contact model, see Eq. �20�. With refer-
ence to the MCS criterion, from typical angular variations of ��

C,
shown in Fig. 3 �for the two particular values of parameter �
=0.229 and 0.136, respectively, associated with the bimaterials
glass–epoxy and carbon–epoxy studied in the present work�, it can
be observed that ��

C�0 in the stiffer material �material 1 for �
�0� for all angles �. Therefore, only kinking toward the more

Fig. 3 Angular distribution of �� for �=0.229 and �=0.136 fol-
lowing Comninou †14‡
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compliant material is expected �material 2 for ��0�. Applying
condition d��

C /d�=0 the following expression of �kink predicted
by the MCS criterion is obtained from Eq. �20�

�kink = − 2 sgn���arccos�2 + ���
3 + ���

, for � � 0 �26�

where sgn�·� gives the sign of a real number. Notice that �kink in
Eq. �26� is a unique function of �, thus being independent of the
global problem configuration. As can be observed in Fig. 4, �kink
in Eq. �26� does not vary substantially as a function of �, the
range of the predicted �kink values �mentioned already by Hayashi
and Nemat-Nasser �38�� being 64.6 deg
 ��kink � 
70.5 deg. For
the particular bimaterials considered in the present work �kink
=−67.6 deg �glass–epoxy� and −68.8 deg �carbon–epoxy�. Note
that angles �kink observed in experiments by Comninou �39� agree
reasonably well with Eq. �26�.

An application of Eq. �22� requires the evaluation of Gkink for
an infinitesimal kink crack, which is well defined in the contact
model. After the kink, the whole crack is assumed to be an ordi-
nary one, i.e., open in the zone adjacent to the tip in a homoge-
neous material, ordinary SIFs kI,II being associated with this tip.
Limits of these SIFs for vanishing kink crack length can be ex-
pressed as a function of KII

C of the parent crack, according to
Leblond and Frelat �40�, in terms of the universal dimensionless
functions Ci2

C as

kI��� = C12
C ��,�,��KII

C, kII��� = C22
C ��,�,��KII

C �27�
Then the ERR at an infinitesimal kinked crack is expressed as

Gkink��� =
kI

2��� + kII
2 ���

Ekink�
�28�

where Ekink� is the effective elasticity modulus for the material
toward which the kink is directed. Note that Eq. �28� can be used
not only in Eq. �22�, after defining �kink by Eq. �26�, but also in
application of MERR criterion to predict values of �kink, which
according to Eqs. �27� and �28� will depend on both bimaterial
parameters � and �. Finally, it should be stressed that taking into
account Eqs. �21� and �28� with Eq. �27� and the fact that �kink
depends only on the bimaterial, Gint,C /Gkink��kink� is also fixed for
a bimaterial, being independent of the problem geometry, load-
ings, and, in particular, independent of KII

C.
Note that the last result may be significant in competition be-

tween further crack extension and kinking �when this is consid-
ered to be governed by Eq. �22�� in situations where during an
interface crack growth the contact zone, originally negligible,
comes to be physically relevant. Thus, the crack will not kink, if it
has not already kinked before a significant contact zone has
arisen. In other words, there are no reasons for a crack to kink
once the contact model controls the crack extension process. All

this considering that the singular term of the Comninou contact
model controls the initiation of the kink. This fact will have im-
plications in the problem considered in this paper.

3 Interface and Kinked Cracks Problems
The numerical analysis is performed by BEM �17�. The basic

model used in the analysis carried out is shown in Fig. 5 and
represents the case of a crack that grows along the interface, a
similar configuration having already been studied by París et al.
�15�. Due to the symmetry only one half of the problem needs to
be studied. This basic model is used in Secs. 4 and 5. The number
of boundary elements modeling the fiber is 83 and that corre-
sponding to the matrix is 115. A strongly refined BEM mesh to-
ward the crack tip is applied, the size of the smallest element
located at the crack tip being 7·10−7a, in order to achieve a very
high accuracy of the numerical results obtained. All the bound-
aries have been modeled in this study with continuous linear ele-
ments �17�.

As several aspects of kinking will be analyzed in the different
sections of this paper, slight variations on the basic model will be
performed later on. The model represented in Fig. 5 permits the
development of a contact zone ��d−�s� between the debonded
surfaces of the fiber and the matrix to be taken into consideration,
�d being the original semidebonding and �s being the separation
zone corresponding to this semidebonding.

To characterize the problem from the fracture mechanics point
of view, the ERR will be used. The expression employed, in the
virtual crack closure technique, when the crack propagates from a
certain angle � to �+��������, is

G��,��� =
1

2�
�

�

�+��

���rr���ur��+�� + ��r����u���+���d�

�29�

where �rr and �r� represent, respectively, radial and shear stresses
along the interface and ur and u� the associated relative displace-
ments of the crack lips. The two modes of fracture, I �associated
to �rr� and II �associated to �r��, are obviously considered in Eq.
�29�, which corresponds to Eqs. �8�, �9�, and �10� adapted to the
polar coordinate system used in this geometry. The value of ��
used in the present calculations is 0.5 deg. The chosen value of
�� is sufficiently small to be representative of the value of the
total ERR. Substantially smaller values of �� would make the
model incoherent with the hypothesis of continuum media as-
sumed. Recall that when the SSC conditions are fulfilled, the com-
ponents of ERR depend weakly on the value of �� taken �see Eq.
�12��, and their limits for ��→0 do not exist. Notice that the
superscripts used in Sec. 2 �“int” and “kink”� are omitted in what
follows for the sake of simplicity.

The presence or not of a physically relevant contact zone be-
tween the debonded faces of matrix and fiber will in any case
define the character of the fracture mode �15�. When the present

Fig. 4 Angle of maximum �� as a function of �

Fig. 5 Model of the single fiber debonded from the matrix
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numerical model does not detect such a contact zone, both stresses
�rr and �r� behave in the model as singular and the crack is
working, in accordance with the numerical model developed, in a
mixed mode. When a physically relevant contact zone is detected,
only �r� �with reference to the components of the stress vector
beyond the crack tip� reaches a singular value, the crack then
working in a pure shear mode.

When modeling the kinked part of the crack becomes neces-
sary, which happens in Sec. 6, the former model is altered, as
shown in Fig. 6, in order to represent the case of a crack that has
first grown along the interface and then progressed through the
matrix.

The original discretization of the basic model is maintained and
artificial new boundaries through the matrix are created in order to
model the kinked crack, the distribution of elements at the neigh-
borhood of the kinked crack tip being the same as that employed
in the interface crack of the basic model. Nodes of the two ficti-
tious boundaries ahead of the crack tip are considered bonded
during the numerical calculations, thus representing the continuity
of the matrix.

When the ERR for the kinked crack growing in the matrix,
modeled as a straight line, is calculated �Sec. 6� the classical Irwin
�24� virtual crack closure technique �developed originally for a
crack in a homogeneous material� is used in a similar way as
described for the previous model.

Two bimaterial systems, those most typical in fiber reinforced
composites, have been considered. One corresponds to a glass–
epoxy system and the other to a carbon–epoxy system. The prop-
erties are listed below as follows:

• Poisson coefficient of the fiber: � f =0.22 �glass� /�12
f =0.22,

�23
f =0.25 �carbon�;

• Poisson coefficient of the matrix: �m=0.33 �epoxy�;
• Young modulus of the fiber: Ef =7.08�1010 Pa �glass� /E1

f

=2.01�1011 Pa, E2
f =1.35�1010 Pa �carbon�; and

• Young modulus of the matrix: Em=2.79�109 Pa �epoxy�.

Plane strain state has been considered, effective elasticity prop-
erties for the isotropic in-plane problem being evaluated as fol-
lows:

• for isotropic materials �glass and epoxy� E�=E / �1−�2�, ��
=� / �1−��; and

• for transversely isotropic material �carbon� E�=E2 / �1
−�12�21�, ��= ��23+�12�21� / �1−�12�21�.

Thus, Dundurs parameters, � and � �in Eq. �1��, and the oscil-
latory index, � �in Eq. �2��, have the following values for both
bimaterial systems:

• �glass–epoxy=0.919, �carbon–epoxy=0.624;
• �glass–epoxy=0.229, �carbon–epoxy=0.136; and
• �glass–epoxy=−0.074, �carbon–epoxy=0.044.

In order to make the results corresponding to both systems
more easily comparable, the same radius of the fiber, a
=7.5·10−6 m, has been taken for both fibers �feasible for carbon
and glass�. In any case, dimensionless results for ERR, G, will be
presented in all cases. These dimensionless values of ERR are
obtained, based on Toya’s �8� approach, dividing the dimensional
results by G0= ��1+�m� /8�m��0

2a	, where �m=3−4�m, �m is the
shear modulus of the matrix, and �0 is the modulus of the applied
tension.

4 The Fiber–Matrix Interface Crack
Kinking, as considered here, is a micromechanical phenomenon

that is supposed to take place once the crack has grown a certain
length along the interface. Thus, it seems worthwhile to study first
the evolution of the crack along the interface as a previous step to
undertaking a kinking study.

The case of a crack along the interface under uni and bidirec-
tional loads has already been studied for a glass fiber and epoxy
matrix system by París et al. �41�, some of the results affecting the
present paper �case of a tension normal to the macromechanical
plane of failure� being refreshed and rounded-off in what follows.

First of all, and in order to prove the accuracy of the BEM
model employed, a comparison between the numerical and ana-
lytical predictions under remote tension is performed. The analyti-
cal solution for the open model of interface cracks �Sec. 2� is
taken from Toya �8�, and due to the fact that it does not prevent
interpenetrations, the contact procedure has, just for this compari-
son, been removed from the numerical analysis. This means that
the open model is taken into account in the BEM analysis. The
comparison is performed just on the glass fiber–epoxy resin sys-
tem.

Figure 7 represents the evolution of the ERR values with �d.
The excellent agreement between the numerical and analytical
predictions in the total value of the ERR �components I and II of
the numerical solution are also represented� can be seen. It is
necessary to insist on the validation character that the results
shown in Fig. 7 have over the numerical tool employed. As will be
seen, some of these results �e.g., values of GI for �d�60 deg in
the presence of interpenetrations� have nevertheless no physical
meaning.

Numerically, the smallest defect modeled corresponds to a
value of �d of 10 deg. To start from this value of the semidebond-
ing can be justified by exploring the initiation of the damage in the
interface between the fiber and the matrix, assumed originally in

Fig. 6 Model of the single fiber after kinking of the debonding
crack

Fig. 7 Values of ERR for the fiber–matrix interface crack under
remote tension from BEM „open model… and from Toya’s ana-
lytical model
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perfect conditions. To this end, the distribution of the radial stress
along the interface, assuming perfect bonding between fiber and
matrix, is represented in Fig. 8.

It is plausible to assume that in an undamaged interface, the
start of the damage will be controlled by the value of the radial
stress in tension. It can be seen from Fig. 8 that the radial stress is
quite constant in a zone corresponding to a value of �d of 10 deg.
Thus, it is quite reasonable to assume that when the radial stress
reaches the tensile strength of the interface, it will produce a de-
fect associated to a value of �d of an order of 10 deg �or more�,
starting from which interface fracture mechanics �see Sec. 2� is
able to control the growth of such a defect.

Now, once the numerical solution has been validated, as well as
the use of interface fracture mechanics, the actual evolution �con-
sidering the possibility of appearance of contact between the deb-
onded parts of fiber and matrix� of the ERR with the debonding
angle in the presence of a remote tension is calculated. The results
shown in Fig. 9 correspond to two different bimaterial systems:
glass–epoxy and carbon–epoxy. When a contact zone is detected,
these results correspond �as has already been mentioned� to the
frictionless case.

First of all, the results represented in Fig. 9 show a clear simi-
larity in the behavior of the dimensionless total ERR, as well as of
its components, as a function of �d, for both bimaterial systems
studied. It indicates that the geometrical features of the problem
play a more important role in the variable analyzed �and conse-
quently in the fracture process� than the properties of the materials
involved. In what follows, and based on this similarity, the results
will be shown only for the glass–epoxy system.

For the two bimaterial systems studied, a maximum value of
ERR appears for �d along the interval between 60 deg and 70 deg
coinciding with the appearance of a physically relevant contact
zone between the debonded parts of the fiber and the matrix �15�.
Thus, with reference to the interface fracture mechanic models
developed, the open model would be of applicability for values of
�d under this interval, whereas the contact model would be valid
for �d over those of the interval. Along the interval of �d between
60 deg and 70 deg both models produce numerically similar ac-
ceptable values. Along this interval the adequacy goes from the
open model over to the contact model �see Sec. 2�. The maximum
value of ERR appears �for the values of �d considered� for �d
=60 deg although it is roughly constant for both bimaterial sys-
tems along the interval of �d between 60 deg and 70 deg.

It should be mentioned that an appearance of a physically rel-
evant near-tip contact zone for large debondings corresponds to
the fact that the direction of the globally imposed shear, originated
by an inclination of the crack tip zone with respect to the direction
of the nominal tension, agrees with the intrinsically allowed slip
direction specified by Eq. �19�.

GI is only significant versus GII for small values of �d, where
the crack tips are oriented almost perpendicular to the loading
direction. As the debonding starts to be significant, Mode I starts
to disappear and Mode II starts to be absolutely dominant, which
happens for �d in Fig. 9 greater than 30 deg, coinciding with the
appearance of an extremely small near-tip contact zone detected
by the present numerical model.

Looking at the evolution of the value of ERR with the debond-
ing, it is clear that as soon as the hypothetical growth of the crack
takes place in a pure Mode II �which happens when a physically
relevant contact zone is detected� this growth is carried out, in
accordance with the decreasing character of ERR observed in Fig.
9 for �d over the interval 60–70 deg in a stable manner. However,
to describe how the damage �the debonding� may grow starting
from an assumed existing damage, formerly evaluated in �d
=10 deg, up to the 60–70 deg, interval of �d, in a mixed mode of
fracture, it is necessary to have an estimate of the critical value of
ERR, Gc. As explained in Sec. 2.4, Gc is a function of the fracture
mode mixity, which evolve with �d, as can be deduced from Fig.
9. Then, first of all the knowledge of the evolution of the fracture
mode mixity, characterized by the local phase angles �K and �G,
with the value of the debonding is required. For the reasons in-
voked formerly this will be done for the glass–epoxy system only.

Figure 10 represents the evolution of both phase angles, �G
�both for the open model, “om,” and contact model, “cm”� and
�K, as a function of �d. �G is calculated using Eq. �14� for ��

Fig. 8 Distribution of the radial stress between fiber and ma-
trix with no damage at the interface

Fig. 9 Values of ERR for the fiber–matrix interface crack under
remote tension for two bimaterial systems: carbon–epoxy and
glass–epoxy

Fig. 10 Evolution of the fracture mode mixity with the semi-
debonding angle
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=0.5 deg �see also Eq. �29��, and �K using Eq. �16�, taking �� / l
�l in terms of an angle� equal to 10.7244, in order to obtain the
vanishing phase-shift angle �0 in Eq. �13�.

It can be observed that �G and �K take similar values for deb-
ondings where the open model is valid. However, as soon as a
physically relevant contact zone is detected the three results rep-
resented in Fig. 10 start to diverge. �K continues to increase and
ends up having physical meaning for �K greater than 90 deg, as-
sociated with the presence of a compression ahead of the crack
tip. These fictitious values of �K are represented by a dashed line
in Fig. 10. The values of �G obtained with an open model also end
up having physical meaning when a physically relevant contact
zone is detected, the values of �G obtained allowing contact be-
tween the interface crack faces being the unique representative,
remaining in a 90 deg value when a physically relevant contact
zone, and consequently a pure Mode II, appears.

In the zone of interest, up to a semidebonding corresponding to
60–70 deg, the open model is valid and the values of the fracture
mode mixity can be used in a prediction of the evolution of the
value of Gc with the mixity. In this study the proposal of Hutch-
inson and Suo �35�, Eq. �24� where the phase angle �K is replaced
by �G �obtained allowing contact between the interface crack
faces�, is followed to perform such a prediction. Figure 11 repre-
sents the evolution of both G and a hypothetical Gc as a function
of �d.

For the case of Gc��G� according to Eq. �24�, three values of
the parameter � �0.2, 0.25, and 0.3� have been considered to cover
the range of typically accepted values. The curves take constant
values when a pure Mode II is detected. For the case of G two
curves associated with different fractions �0.6 and 1� of the ap-
plied stress �0 have been considered. It has been assumed that the
stress would increase up until a moment in which the value of G
corresponding to �d=10 deg reaches the value of Gc. It has been
assumed to happen for a value of �=�0.

It can be seen from Fig. 11 that once G reaches Gc for �d
=10 deg, for all the values of � considered, the growth of the
crack will be unstable but not trespass the interval of semidebond-
ings between 60 deg and 70 deg. Thus, it is plausible �and in
accordance with experimental evidence �Zhang et al. �10�� that the
semidebonding will not initially pass the interval 60–70 deg and
over these values the growth, as previously reasoned, will be car-
ried out in a stable manner.

The change in the character of the growth of the crack from
unstable to stable in the neighborhood of �d=60 deg makes this
zone a favorable one for the appearance of another mechanism of
failure.

To summarize the section, it has been proven that a defect origi-
nated by the radial stresses and of a size according to the distri-
bution of these radial stresses, will grow in an unstable manner,

stopping the growth in the interval of �d between 60 deg and
70 deg. The growth of the interface crack after this interval is
stable, an increment in the value of the applied stress being re-
quired for an extension of the crack. The mentioned interval of �d
between 60 deg and 70 deg represents a configuration where the
damage is stabilized and another mechanism of damage may take
place. This will be studied in the next section.

5 Stress State at the Neighborhood of the Fiber–
Matrix Interface Crack Tip: Numerical BEM Solution

In this section the first singular terms of the asymptotic expan-
sions of the elastic solutions at the straight interface crack tip
presented in Sec. 2, given by Eqs. �3�, �4�, and �7� for the open
model and Eqs. �17� and �18� and Eq. �20� for the contact model,
will be taken as a reference for an analysis of the present situation
of the curved interface crack between fiber and matrix. It is con-
sidered that the characteristic features of these local solutions,
comprehensively discussed in Sec. 2, are of crucial importance
when an interface crack propagation out from this interface by
kinking is analyzed.

For example, the local distribution of circumferential stress ��
in the contact model �see Fig. 3� predicts compressions in the
fiber, whereas in the matrix compressions are only in directions
which are very inclined and backward with respect to the interface
crack propagation, the maximum �� being achieved inside the
matrix at the angle �d=67.6 deg with respect to the direction tan-
gent to the fiber ahead of the interface crack, obtained by Eq. �26�
for �=0.229.

The first question to be considered in the numerical study using
BEM is the search for the expected direction of kinking. In this
sense it can be assumed that, if the crack growing along the inter-
face changes its direction of growth to penetrate into the matrix,
the direction of growth, given by the angle �kink of Sec. 2.4, will
be one along which the circumferential stress �Fig. 12� is maxi-
mum. This supposition is based on the fact that Mode I is, in
general terms, the main cause of an existing crack growing or
kinking, and it is along the MCS direction that the effect of this
mode is more dominant.

Thus, the direction of the MCS �defined by an angle �=�kink,
Fig. 12� at the neighborhood of the crack tip corresponding to
different semidebondings �d at which kinking is assumed to take
place, will first be determined. The selection of the characteristic
distance to the crack tip, referred to as radius R �Fig. 12� at which
the study is going to be carried out, must be performed carefully.
On one hand the value of R must be small enough for the stresses
to control the possible change of direction of the crack, but on the
other hand must be large enough to maintain the physical meaning
of the matrix as a continuum medium. Two values of R �R
=0.1% and 1% of the fiber radius a� satisfying these conditions
have been considered. The results are shown in Fig. 13, where the
angle �=90 deg+�d−�kink, used by Toya �8�, represents the MCS
direction with respect to the load �horizontal� direction.

Fig. 11 Evolution of G and Gc as a function of the semideb-
onding angle

Fig. 12 Configuration of circumferential stresses at the neigh-
borhood of the interface crack tip
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In addition to the numerical results, those associated to the
analytical solutions by Toya �8� and by Eq. �26� obtained from the
singular asymptotic term of the Comninou contact solution have
also been included. It can be observed that Toya’s results, repre-
sented by continuous lines in Fig. 13, agree excellently with BEM
results in the interval of debondings where there is no contact
zone, whereas in the presence of a contact zone BEM results are
very close to the values predicted by Eq. �26�. Due to the different
properties of fiber and matrix, Comninou contact model solution
always predicts a near-tip contact zone, although of a very small
size for �d below 50–60 deg �being of subatomic size for �d about
40 deg and smaller�. Thus, taking a value of R at a subatomic
scale, BEM predictions can still adjust predictions by Eq. �26�, as
can be observed in Fig. 13 for values of �d of an order of 30 deg.

Once the numerical solution has been checked, it can be ob-
served from Fig. 13 that the evolution of the angle of MCS with
the semidebonding, for the two values of R studied, is quite con-
sistent. It is in any case instructive, in order to have a physical
meaning for these results, to represent them on the scheme of a
fiber as a function of the semidebonding �Fig. 14�. An interval of
directions is represented when there is a variation in the angle of
MCS for different radii R of inspection between 0.01 and 0.001 of
fiber radius. The angle predicted by Eq. �26� is also represented
for comparison, it being possible to observe that the value of this
angle is placed in the interval of directions numerically predicted
by the MCS criterion for �d over 50 deg. As mentioned above, this
is due to the fact that for these debonds, a non-negligible contact

zone appears at the interface crack tip and the singular asymptotic
term of the Comninou contact solution starts to govern the near-
tip solution at physically meaningful distances, such as those R
=0.01a and R=0.001a considered.

It is clear that the angle of MCS is approximately oriented
normal to the nominal load for values of �d in the interval between
60 deg and 70 deg, which again makes this interval as the candi-
date to change the damage from debonding to kinking.

The distribution of the circumferential stresses along a circum-
ference of radius R centered at the crack tip is shown in Fig. 15
for the two different debondings �d defining the interval of interest
and for the two values of R already mentioned.

First, the state of circumferential stress is quite similar for the
extremes of the interval where it is assumed that the debonding
crack stops. This similarity refers to both the values of the stress
and the position where the maximum is reached �as was already
observed in Figs. 13 and 14�. Also, it has to be mentioned that the
shape of the distribution is not affected by the radius taken for the
inspection, which permits these distributions to be taken as repre-
sentative of the stress state controlling the kinking of the debond-
ing crack.

It is now of interest to extend the study carried out for �d
=60 deg and 70 deg to a wider range of �d in order to find out, for
�d apart from the mechanically expected range of �d at which
kinking may occur, how the value of MCS evolves. After the
similarity in the results obtained in Fig. 14 for the two radii con-
sidered, now only the case of R=0.01a will be considered. Thus,
Fig. 16 shows for this radius the circumferential stresses at the
neighborhood of the crack tip versus the circumferential coordi-
nate.

It can be perfectly observed that the circumferential coordinate
for which the circumferential stress reaches its maximum does not
change too much. Additionally, it can also be observed in the
figure that for each �d there is a certain interval of values of � �of
an order of 10 deg for significant semidebondings of �d
=60–70 deg� at which the circumferential stresses are quite simi-
lar to the maximum value. Finally, it can also be noticed that there
are no values of MCS significantly greater than those correspond-
ing to the interval of �d between 60 deg and 70 deg �in fact the
maximum values correspond to �d=60 deg�.

6 Energy Release Rate at Kinking
In the previous section the direction of MCS at the neighbor-

hood of the crack tip for different lengths of the interface crack
has been studied. The purpose of that study was to determine the
direction in which the crack would penetrate into the matrix, if

Fig. 13 Value of the angle � defining the MCS direction as a
function of the semidebonding angle

Fig. 14 Graphical description of the evolution of the angle of
MCS with the semidebonding angle

Fig. 15 Distribution of the circumferential stresses around the
crack tip of the interface crack
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appropriate circumstances �similar to those considered in this
study� caused this to happen, in accordance with the MCS crite-
rion, Sec. 2.4.

This section will evaluate how possible it is for a crack that is
growing along the interface to turn into the matrix following the
kinking direction previously determined, using the criterion for
competition between interface crack extension and kinking de-
scribed in Eq. �22�. To this end an ERR analysis at kinking is
going to be performed.

It has to be pointed out that in this paper only a comparison of
the ERR of a crack growing along the interface versus a crack
leaving the interface and penetrating into the matrix is going to be
performed. This comparison cannot be completely conclusive re-
garding the appearance of kinking due to the fact that the critical
values of G, Gc, of the interface and the matrix, appearing in Eq.
�22�, would also be involved in the phenomenon.

A description of the configuration of the complete crack when
kinking appears is first of all performed. The description is with
reference to the case of �d=70 deg. The kinked part of the crack is
always open independently of the length of the crack. This is
coherent with the almost normal orientation of the kinked part of
the crack with respect to the load applied. When the length of the
kinked crack is very small, the previous contact zone existing in
the interface crack before the kinking appears still remains, al-
though being of a very small size. When the length of the modeled
kinked crack is not very small, the previous contact zone at the
interface crack completely disappears when the load is applied. In
view of all this, the whole crack �the interface and the kinked
parts� was represented as fully open in Fig. 6.

The ERR by a kinked crack associated with �d=70 deg and
penetrating into the matrix along the vertical direction �almost
coincident with MCS� is now calculated. The results of this case
are shown in Fig. 17, where ERR values appear, as well as their
components, versus the length of the kinked crack.

The unequal contribution of the two modes of failure to the
total ERR is first of all noticeable. While contribution of Mode I,
GI, is very important, the contribution of Mode II ERR compo-
nent, GII, is almost nonexistent. This result was foreseeable, in
view of the completely transversal position of the applied load in
relation to the direction of the kinked crack, for any length of the
kinked crack.

Referring to the evolution of the ERR, it can be observed that it
increases with the crack length. Thus, taking into account that
Mode I completely dominates the growth, it can be concluded that
the crack propagation is unstable. In this situation, once kinked,
no additional load increase would be necessary for the crack to
continue growing.

Fig. 16 Distribution of circumferential stresses at the neighborhood of the crack tip, for different
semidebondings

Fig. 17 Values of the ERR and its components for a kinked
crack

Journal of Applied Mechanics JULY 2007, Vol. 74 / 713

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The asymptotic tendency shown in Fig. 17 by the evolution of
the ERR at the origin �vanishing length of the kinked crack� is
quite noticeable. It appears clear from the figure that ERR does
not go to zero when the length of the kinked crack is very short.
On the contrary, there is for a vanishing kinked crack a finite value
of the ERR, in agreement with the analysis associated with Eq.
�28�, Sec. 2.4. This situation is coherent with the fact that the total
length of the crack is not only the length of the kinked crack but
also includes that of the interface crack and, consequently, is not
zero when the kinked crack vanishes. Moreover, this finite limit
value of the ERR of the kinked crack in general does not coincide
with the value of the ERR for the crack continuing to grow along
the interface, as will be seen later on.

Having studied the case of �d=70 deg, the behavior for differ-
ent �d is now investigated in order to evaluate the variation with
�d of the ERR of the kinked crack. To this end the results obtained
for different �d are shown together in Fig. 18. In all cases, vertical
kinked cracks, as in the case studied above, have been considered.
The purpose being to show tendencies of how ERR of the kinked
crack changes with �d, only the values for the shortest kinked
cracks studied, whose size is 0.05a, have been included in the

representation. In any case, it has to be mentioned that the rising
character of the ERR with the length of the kinked crack was
observed for all the values of �d considered.

As can be observed from Fig. 18, a dashed line instead of a
continuous one has been used to link points belonging to the same
group of values of ERR �Mode I, Mode II, and total�, aiming to
emphasize the existent disconnection between them. All points
plotted in the graph represent an ERR �Mode I or Mode II com-
ponent or total� associated with a kinked crack of the same size
but coming from a different interface crack �characterized by �d�,
so that values of the ERR of the same group �Mode I, Mode II, or
total� correspond to cracks that have kinked from different places
of the interface, a physical evolution from one crack to another
then being impossible.

The tendency shown in Fig. 18 for the values of ERR as a
function of the debonding favors the idea that, if kinking appears,
the most plausible values of �d are those between 60 deg and
70 deg, where GI and G reach a maximum.

In order to have more information about the plausibility of such
a phenomenon, according to the competition criterion Eq. �22� it
is necessary �although not sufficient to conclude whether the kink-
ing appears because it involves the Gc values of the interface and
matrix� to compare the ERR of the crack when initiating the
propagation through the matrix, shown in Fig. 18, with that re-
leased when continuing to grow along the interface. Figure 19
represents this comparison and for the sake of completeness the
values of the ERR of a kinked crack growing in the direction of
MCS have also been included, in addition to the case of vertical
kinked cracks predominantly studied here.

First of all, the two cases of the kinked cracks considered show
a coherent evolution with �d. The values coincide at �d=70 deg
where the direction of MCS is approximately normal to the load,
the values of ERR at the neighborhood of 70 deg being very close
to each other. The main discrepancies appear for small angles
where, in agreement with Fig. 14, the MCS direction is quite far
from the normal direction to the load, the effect of Mode I, which
was the dominant contributor to ERR, then being less important.

With reference to the comparison of the ERRs for the kinked
crack versus the crack continuing to grow along the interface, the
significantly greater values of the ERR of the kinked crack in the
interval of interest are quite apparent. It should also be remem-

Fig. 18 Values of ERR for the shortest kinked cracks corre-
sponding to different semidebondings

Fig. 19 Comparison between ERR of an interface crack and kinked cracks growing normal to
the load and along the direction of MCS
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bered that the presumably unstable growth of the interface crack
�after Figs. 9 and 11� up to a �d at the neighborhood of 60–70 deg
where the stable growth clearly starts, would theoretically prevent
the crack �unless interference with another crack arose� from
separating from the interface. At �d between 60 deg and 70 deg
the maximum differences appear between the ERR of the crack
continuing to grow along the interface and of the kinked crack, it
having been made clear previously that whereas the growth of the
crack along the interface becomes stable, the growth of the crack
penetrating the matrix is unstable.

In addition, and although as was previously stated, the predic-
tion of growth of the crack along two alternative paths would
imply the knowledge of the fracture resistance parameters Gc for
the interface and for the matrix, it should be remembered at this
point that whereas the growth along the interface is in Mode II the
growth along the matrix is in Mode I, the values of Gc for Mode
I being for a determined configuration �material or interface� sig-
nificantly smaller than the values of Gc for Mode II.

Finally, under the assumption that the Comninou frictionless
contact model governs the debonding growth for larger debonding
angles, the analysis presented after Eq. �28� implies that, in the
case of a weak interface �relatively small value of Gc for the
interface�, if the debonding crack does not kink for �d in the
interval between 60 deg and 70 deg, where the near-tip contact
zone becomes physically relevant, it will not kink for larger deb-
ondings.

All this supports the idea that, if kinking takes place, the most
plausible values of �d at which kinking can appear are in the
interval between 60 deg and 70 deg, which does not prevent the
existence, without kinking of interface cracks corresponding to
semidebonding angles greater than those indicated.

7 Conclusions
Numerical evidence has been generated by means of a planar

micromechanical model for the growing and kinking of an inter-
face crack between fiber and matrix under load transversal to the
fiber. The information generated can be summarized in the follow-
ing points, which will refer to Fig. 20 where a schematic devel-
opment of the damage between two adjacent fibers transversally
placed to the orientation of the load is shown:

�a� Assuming that initially the interface between fiber and
matrix is undamaged, the failure is assumed to start con-
trolled by the radial interface tension. In accordance with
Fig. 8, it is reasonable to assume, due to the distribution
of the radial stresses, that the minimum possible damage
can be envisaged as a semidebonding �d of about 10 deg,
as represented in Fig. 20�a�.

�b� Assuming the formerly mentioned semidebonding �d, the

crack will start to grow when the ERR equals the fracture
toughness of the interface. In accordance with Fig. 11, it
will make the crack grow to a �d in the interval between
60 deg and 70 deg as represented in Fig. 20�b�. Special
mention must be made of the assumption of variation of
the fracture toughness with the fracture mode mixity,
which changes in turns with the length of the interface
crack.

�c� Exploring the most plausible direction of kinking in the
formerly mentioned semidebondings interval, it has been
found that the direction of MCS corresponds with that
oriented normal to the direction of application of the load
�see Figs. 13–15�. It is along this direction that the energy
released by the kinked crack is maximum �Fig. 19�. All
this supports the appearance of a kinked crack as repre-
sented in Fig. 20�c�.

�d� The growth of the kinked crack �Fig. 17� is unstable and,
because of the relative orientation of the kinked crack
with respect to the load, under almost pure Mode I. This
supports the idea that a complete macrocrack will appear
by the coalescence of two adjacent kinked interface
cracks �Fig. 20�d��.

When comparing the ERRs for an interface crack in the range
of �d=60–70 deg for the two alternative situations of continuing
to grow along the interface or penetrating into the matrix, it has
been found that the ERR in the case of kinking is greater �by an
order of 25%� than in the case of continuing to grow along the
interface. This fact has to be added to the previous conclusions
that the growth of the interface crack after 60 deg is stable,
whereas that of the kinked crack is unstable.

The described mechanism of failure can be clearly connected
with that observed in experiments run in the laboratory with a
carbon fiber composite Z-19.775, which is represented in Fig.
20�e�. In view of the connections between the predictions gener-
ated in this paper using interfacial fracture mechanics and the
observed behavior, it can be concluded that interfacial fracture
mechanics has been shown to be efficient in explaining the gen-
eration and propagation of damage in the interfiber failure of a
fibrous composite under transversal load.

Interfacial fracture mechanics was already used by the authors
to explain the effect of bidirectional loading transversal to the
fibers direction �41�. Now under study is the application of inter-
facial fracture mechanics to explain the apparent macroscopic
angle of failure under transversal compressive loading. All the
knowledge generated using this tool may help in the near future to
generate physically based failure criteria of fibrous composites.
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Residual Elastic Strains in
Autofrettaged Tubes: Variational
Analysis by the Eigenstrain Finite
Element Method
Autofrettage is a treatment process that uses plastic deformation to create a state of
permanent residual stress within thick-walled tubes by pressurizing them beyond the
elastic limit. The present paper presents a novel analytical approach to the interpretation
of residual elastic strain measurements within slices extracted from autofrettaged tubes.
The central postulate of the approach presented here is that the observed residual stress
and residual elastic strains are secondary parameters, in the sense that they arise in
response to the introduction of permanent inelastic strains (eigenstrains) by plastic de-
formation. The problem of determining the underlying distribution of eigenstrains is
solved here by means of a variational procedure for optimal matching of the eigenstrain
finite element model to the observed residual strains reported in the literature by Venter
et al., 2000, J. Strain Anal., 35, p. 459. The eigenstrain distributions are found to be
particularly simple, given by one-sided parabolas. The relationship between the mea-
sured residual strains within a thin slice to those in a complete tube is discussed.
�DOI: 10.1115/1.2711222�

1 Introduction
Residual stresses are present in all manufactured products, at a

higher or lower level, by design or as a side effect of some other
processing operation. Residual stresses affect the performance of
many different devices and components, from strained layers and
optical components in microelectronics, to microcantilever sen-
sors in biological applications, to large engineering components
such as the aero-engine fan and turbine blades.

Residual stresses not only affect the deformation behavior and
performance of components and structures, but also respond
themselves to externally applied thermal and mechanical loads, be
it during component manufacture, assembly, or in service. The
interaction between residual stresses and fatigue performance is
particularly interesting for many applications.

The present study described an application of a broad and ge-
neric concept of eigenstrain theory of residual stresses. The fun-
damental postulate of this theory is that residual stresses and re-
sidual elastic strains, quantities that are simply related to each
other through generalized Hooke’s law, are in fact secondary pa-
rameters that arise within the material as a consequence of elastic
equilibration following the introduction of permanent inelastic
strains, or eigenstrains. Elastic equilibration here means the pro-
cess of generation of additional elastic strains that preserve strain
compatibility, but also give rise to residual stresses that satisfy the
equilibrium conditions within the body, and traction-free condi-
tions at boundaries.

Some readers may perceive a conceptual difficulty here: how
can one be entirely certain that, as a consequence of the introduc-
tion of some inelastic strains into an object, no plastic deformation
or creep would take place? The way to overcome this difficulty is
to realise that the separation of strains into eigenstrains and re-
sponse strains is the prerogative of the person performing the
analysis: by definition one chooses to call all the inelastic strains
arising from various processes �plastic deformation, creep, trans-

formation, cutting and joining, etc.� by the collective term eigen-
strain. All the strains that remain must then necessarily be elastic.
Note that residual stresses only arise in connection and in numeri-
cal correspondence to this elastic part of the total strain within the
object. Of course, one must not disregard the possibility of addi-
tional inelastic strains occurring during subsequent deformation of
the object. Nevertheless, at any particular instant in time it is
possible to point out unequivocally the inelastic part of strain, and
to designate it eigenstrain, and the elastic part of strain, and to
associate this part with the elastic equilibration response, and the
attendant residual stress distribution.

The knowledge of eigenstrain, or inelastic strain distribution is
a better quality, more fundamental knowledge than that of residual
stresses. The basis of this statement is as follows. Consider a
residually stressed body that contains a distribution of eigenstrain.
If this distribution is known the complete residual elastic strain
and residual stress states can be readily reconstructed through the
single application of the theory of elasticity. This so-called direct
problem of eigenstrain theory is simple, since it is linear and does
not require iterative solution. The answer can be obtained by the
application of elasticity theory with a perturbation in the Saint-
Venant strain compatibility condition �1�, or from a special formu-
lation of the finite element method that makes an allowance for
the existence of eigenstrain distributions �2,3�.

If, on the other hand, the residual stress is known, then the
underlying eigenstrain distribution cannot be readily obtained
from elastic theory. It appears, in fact, that the solution of this
inverse problem of eigenstrain theory would require iterative pro-
cedures. Nevetheless, it is possible to develop an efficient regu-
larization of the inverse problem that allows an approximation to
the unknown eigenstrain distribution to be determined without
iteration. This framework will be presented below.

A further advantage flows from knowing the eigenstrain distri-
bution. If the object of study is subjected to a nondisturbing sec-
tioning operation �imagine separating the object into two halves
by using an electric discharge machining tool�, then the prior
knowledge of residual stress state provides little help in deducing
the residual stress states in the resulting pieces. If, on the other
hand, the eigenstrain distribution were known prior to sectioning,
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then the newly created residual stress states can be readily com-
puted, each by the application of an easy procedure for solving the
direct eigenstrain problem. Furthermore, knowledge of the under-
lying eigenstrain distributions provides the link between residual
states before and after sectioning, thus overcoming the principal
difficulty in dealing with residual stress states that often baffles
researchers. In fact, using eigenstrain as the basis for the modeling
approach allows utilization of the information on residual stresses
prior to and after sectioning to achieve more accurate determina-
tion of eigenstrain than each of those states separately.

Finally, and additional advantage of the eigenstrain approach
lies in the fact that residual stress can be assessed not only at
locations where it was originally measured, but everywhere within
the object. One has to exercise certain care in interpreting the
results, of course, since the reconstructed residual stress state is
only accurate within the state space spanned by the functional
form chosen for the eigenstrains. Nevertheless, the eigenstrain ap-
proach provides a neat way of incorporating the constraints im-
posed by the requirements of continuum mechanics: traction-free
boundary conditions, strain compatibility, etc. In generic terms,
the present residual stress reconstruction approach seeks to ap-
proximate the entire field, while the traditional methods rely on
pointwise interpretation.

The above discussion outlines the broad context of the present
study as the interpretation of experimental measurements of re-
sidual elastic strains �or their changes� with the purpose of recon-
structing the complete residual stress field, and of identifying the
underlying inelastic strain distribution that acts as the source of
the residual stress state. More specifically, the present study ad-
dresses the analysis of axially symmetric inelastic deformation of
thick-walled tubes subjected to internal pressure exceeding the
elastic limit of the tube. As the pressure is increased, it induces
plastic deformation within a hollow cylinder with the external
boundary that progresses outward from the inner bore toward the
outer surface of the tube.

The original analysis of the axisymmetric deformation of thick-
walled tube is attributed to Lamé’s work published in 1852 �4�,
and can be found for example in Soutas-Little �5�. The elasto–
plastic axially symmetric deformation of thick-walled tubes has
been reviewed by Den Hartog �6� and solved under various spe-
cific assumptions by Gao et al. �7–9�.

The experimental data used in the present study were published
by Venter et al. �10�. Two specimens were considered designated
by the authors of the strain measurement study as specimen B and
specimen C, respectively. We present the results of eigenstrain
modeling of residual elastic strains that were measured by neutron
diffraction in both cases.

Approximate matching of conventional direct finite element
�FE� calculations to residual elastic strain measurements by neu-
tron diffraction has already been carried out and reported by Ven-
ter et al. �10�. This was repeated by the present authors as the first
tentative step of the analysis. However, the conditions of autofret-
tage loading and strength properties of the material of the tube
�e.g., complex hardening behavior� are not known in sufficient
detail. It is therefore impossible to carry out the direct FE solution
to obtain a prediction of the “correct” residual stress state. A key
advantage of the proposed eigenstrain approach is that the knowl-
edge of yield behavior of the material is not required for
matching—it suffices to know the elastic properties only.

2 Description of Experimental Data
Experimental results of strain evaluation in slices obtained from

autofrettaged tubes were described by Venter et al. �10�, who used
three different techniques: neutron diffraction, Sachs boring �11�,
and the compliance method �12�. We focus particular attention on
the neutron diffraction method, since the authors of that paper
conclude that this method provides the most detailed and reliable
assessment of the residual elastic strains.

Strain evaluation by diffraction is achieved by monitoring the
shift in the position of the scattered peak center. This can be done
either in the angular dispersive configuration, by scanning the
scattering angle 2� from a monochromatic beam, or in the energy
dispersive mode, by monitoring the energy of scattered photons
using an energy-resolving detector and a white beam.

It is then possible to deduce the lattice orientation specific elas-
tic strain using Bragg’s law

2dhkl sin � = � =
hc

E
�1�

using the following formula

�hkl =
dhkl − dhkl

0

dhkl
0 �2�

The selection of the most appropriate diffraction peak is a separate
research topic in experimental strain analysis. Here we contend
ourselves with following the conclusions of Venter et al. �10� that
the �211� peak in steel presents the best choice for the purposes of
estimating the engineering macroscopic average strain.

The experimental data of Ref. �10� were collected using mono-
chromatic neutron diffraction on the residual strain instrument of
the SAFARI-1 research reactor operated by NECSA in Pretoria,
South Africa.

Figure 1 illustrates the geometry of the annular “slices” ob-
tained from autofrettaged tubes by Venter et al. �10�. Included in
this diagram is the putative position of the elastic–plastic bound-
ary. This boundary is not known a priori and depends not only on
the maximum pressure applied during autofrettage treatment,
but also on the mechanical response characteristics of the tube
material.

Figure 2 illustrates a possible arrangement for diffraction mea-
surement and indicates the positions of the incident and diffracted
beams. Diffraction peak is obtained from the scattering volume
occupying a cube of approximately 4 mm side length, thus pro-
viding significant averaging.

The markers in Figures 3 and 4 indicate the values of the radial
and hoop residual elastic strains, respectively, measured in speci-
men B �10�. The continuous curves in these diagrams correspond
to the predictions from eigenstrain modeling, and will be dis-
cussed in some detail below.

The markers in Fig. 5 and 6 indicate the values of the radial and
hoop residual elastic strains, respectively, measured in specimen C
�10�. Once again, continuous curves in these diagrams correspond
to the predictions from eigenstrain modeling.

Fig. 1 Schematic illustration for the description of axisymmet-
ric deformation of a thick-walled tube of internal radius a and
external radius b under internal pressure p. Parameter c indi-
cated the radius of the elastic–plastic boundary, and q is the
pressure transmitted across this interface.
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3 The Direct Problem of Autofrettage
We use the eigenstrain finite element �eFE� to compute the

residual stress fields within the transverse annular slices of the

autofrettaged tubes. The commercial ABAQUS finite element
package �Version. 6.3� was used in the axisymmetric formulation
with a simple rectangular uniform mesh. Eigenstrains were repre-
sented using anisotropic temperature dependent pseudo-thermal
strains �2�.

The axial eigenstrain effects are ignored in the present study, on
the basis of the assumption of plane strain persisting within long
cylindrical objects loaded transversely to their generator, and fol-
lowing the experiments carried out within the simulation. The
radial and hoop eigenstrains are assumed to be equal and opposite
in order to enforce the plastic incompressibility condition.

The unknown eigenstrain distribution may therefore be readily
described by a single function of the radial position within the
cylinder: we ignore any possibility of circumferential strain varia-
tion. Moreover, in the present problem it is immediately clear that
the extent of the eigenstrain distribution is limited by the inner
bore of the tube, on the one hand, and the outer radius, a priori
unknown, of the plastic zone.

In order to develop a solution for the direct problem of eigen-
strain theory for the present problem we use an axially symmetric
finite element model and introduce the eigenstrains by way of
anisotropic pseudo-thermal strains represented by a truncated se-
ries of basis functions, so that

Fig. 2 A possible arrangement of autofrettaged tube slices
with respect to the incident and diffracted beams. The dashed
lines indicate the incident and diffracted beams; the arrow
shows the scattering vector that indicates the orientation of the
strain component being measured „radial in the present
example….

Fig. 3 Radial residual elastic strain in specimen B: experimen-
tal measurements „markers… and eigenstrain model prediction
„continuous curve….

Fig. 4 Hoop residual elastic strain in specimen B: experimen-
tal measurements „markers… and eigenstrain model prediction
„continuous curve…

Fig. 5 Radial residual elastic strain in specimen C: experimen-
tal measurements „markers… and eigenstrain model prediction
„continuous curve…

Fig. 6 Hoop residual elastic strain in specimen C: experimen-
tal measurements „markers… and eigenstrain model prediction
„continuous curve…
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− �rr
* �r� = ���

* �r� = �
i=1

N

ci�i�r� �3�

Here N is the total number of basis distributions used in the
model. In practice a suitable choice of the basis functions could be
made in the form of Chebyshev polynomials, so that

�i�r� = Ti−1�x� �4�

where the variable x is introduced to provide a normalization of
the radial range of eigenstrain distribution to interval �−1,1� of
conventional definition of Chebyshev polynomials. We choose the
eigenstrain distribution range to exceed the likely correct extent of
the plastic zone, and allow the variational procedure described
below to determine the real extent over which the eigenstrain must
be introduced.

It must be noted here that the solution of the direct eigenstrain
problem can be readily obtained for any eigenstrain distribution
by an essentially elastic calculation within the eFE model. In par-
ticular we note that this task is easily accomplished for each of the
basis functions �i�r�.

We further note that due to the problem’s linearity, the solution
of the direct problem described by a linear combination of indi-
vidual eigenstrain basis functions �i�r� with coefficients ci is given
by the linear superposition of solutions with the same coefficients.

This observation provides a basis for formulating an efficient
variational procedure for solving the inverse problem about the
determination of underlying eigenstrain distribution. This proce-
dure is introduced in the following section.

4 Eigenstrain Inverse Problem Formulation
The problem that we wish to address in the present study stands

in an inverse relationship to the one described in the previous
section. In practice most frequently the residual elastic strain dis-
tribution is known, usually partially, e.g., from diffraction mea-
surement. The details of the preceding deformation process need
to be found, such as the depth of the plastic zone. Alternatively, in
the absence of nondestructive measurements of residual elastic
strain, changes in the elastic strain can be monitored, e.g., using
strain gauges, in the course of material removal. In all cases
the purpose is to determine the unknown parameters of the
deformation.

In practice the residual elastic strain, or its increments, can only
ever be measured at a finite number of points. We are therefore
seeking to find the unknown deformation parameters, such as the
plastic zone outer radius, c, by matching the residual elastic strain
distributions predicted by the elasto–plastic model of the previous
section, to the finite data set of measured values.

Questions arise regarding the invertibility of the problem; its
uniqueness; the regularity of solution, i.e., whether the solution
depends smoothly on the unknown parameters. Although we give
no answer to these questions here, we present a constructive in-
version procedure that can subsequently be evaluated in terms of
its uniqueness and regularity.

Consider a set of experimental data consisting of the values of
radial residual elastic strains �r.e.s.� �rr

j and hoop residual elastic
strains �r.e.s.� ���

j collected at positions rj, j=1, . . . ,m. Thus, we
assume that the data were collected from a one-dimensional scan
in coordinate r, but that two components of residual elastic strain
were measured at each point. It is worth noting, however, that the
approach presented below is not in any way limited to problems
arising from one-dimensional scans, and can be readily general-
ized to two- and three-dimensional cases.

Now denote by err�r� and e���r� the predicted, or modeled dis-
tributions of, respectively, the radial and hoop components of the
residual elastic strain. Evaluating err�r� and e���r� at each of the
measurement points gives the predicted values err

j =err�rj� and
e��

j =e���rj�. In order to measure the goodness of the prediction we

form a functional J given by the sum of squares of differences
between actual measurements and the predicted values, with
weights

J = �
j=1

m

�wj��rr
j − err

j �2 + wj����
j − e��

j �2� �5�

The choice of weights wj can be made on the basis of additional
information available; for example, they could be chosen based on
the accuracy of individual measurements being interpreted. How-
ever, in the present analysis we shall ascribe equal unit weights to
all squared differences appearing in Eq. �5�.

Minimization of functional J provides a rational variational ba-
sis for selecting the most suitable model to match the measure-
ments, in terms of the overall goodness of fit. Given a set of fixed
measurements �rr

j and ���
j , J can be thought of as a function of the

residual stress state, or any set of parameters that describes its
generation. One important possibility is to use eigenstrains to de-
fine the residual stress and residual elastic strain state. These are
inelastic strains of any origin that are responsible for producing
residual stress. In principle, a continuous distribution of eigen-
strains must be described by �at worst� three-dimensional varia-
tion of six scalars �or one symmetric second rank tensor�. One
way to reduce the complexity of the problem is to represent the
unknown source eigenstrain distribution as a linear combination,
i.e., a truncated sum of basis functions with unknown coefficients
in Eq. �3�.

The results of the previous section contain the procedure for the
solution of the direct problem, i.e., the determination of the re-
sidual elastic strain distribution that arises in response to an arbi-
trary eigenstrain distribution �*�x�. This procedure can now be
applied to each of the N basis distributions �i�x� in turn. As
a result, a family of residual elastic strain solutions Ei�x� is
obtained.

Due to the linearity of the direct problem, the predicted values
err

j and e��
j of the radial and hoop residual elastic strains due to the

eigenstrain distribution �*�x� of the equation can themselves be
written in the form of a superposition of responses to the basis
eigenstrain distributions, namely

err
j = �

i=1

N

ciErr
i �xj� = �

i=1

N

cierr
ij �6�

with the same coefficients ci as in Eq. �3�.
The inverse problem of determining the unknown eigenstrain

distribution �*�x� has now been reduced to the problem of deter-
mination of N unknown coefficients ci that deliver a minimum to
the functional J in Eq. �5�, which may now be rewritten as

J = �
j=1

m �wj��rr
j − �

i=1

N

cierr
ij�2

+ wj����
j − �

i=1

N

cie��
ij �2	 �7a�

For the purposes of avoiding laborious algebraic manipulations
the above equation is rewritten as

J = �
j=1

m

wj��
i=1

2N

cieij − yj�2

�7b�

This equation can be seen as a shorthand notation for Eq. �7a�,
where eij is taken to denote err

ij for 1� i�N, e��
ij for N� i�2N,

and yj is taken to denote �rr
j for 1� i�N, ���

j for N� i�2N.
The expression in equation �7b� is quadratic and positive defi-

nite in the unknown coefficients ci. It follows that the functional
has a unique minimum that is found by satisfying the condition

�cJ = 0, or �J/�ci = 0, i = 1, . . . ,N �8�

Due to the quadratic nature of the functional in Eq. �7a�, the
system of equations in Eq. �8� is linear. Therefore, the solution for
the unknown coefficients ci can be readily found without iteration
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by inverting the linear system arising in Eq. �8�. This system is
written out explicitly below.

The partial derivative of J with respect to the coefficient ci can
be written explicitly as

�J/�ci = 2�
j=1

m

wjeij��
k=1

N

ckekj − yj�
= 2��

k=1

N

ck�
j=1

m

wjeijekj − �
j=1

m

wjeijyj� = 0 �9�

For purposes of illustration, let us now assume that the weights
are equal to unity, so that Eq. �9� simplifies to

�J/�ci = 2��
k=1

N

ck�
j=1

m

eijekj − �
j=1

m

eijyj� = 0 �10�

We introduce the following matrix and vector notation

E = 
eij�, y = 
yj�, c = 
ci� �11�

Noting that notation ekj corresponds to the transpose of matrix E,
the entities appearing in Eq. �10� can be written in matrix form as

A = �
j=1

m

eijekj = EET, b = �
j=1

m

eijyj = Ey �12�

Hence Eq. �10� assumes the form

�cJ = 2�Ac − b� = 0 �13�
The solution of the inverse problem has thus been reduced to the
solution of the linear system

Ac = b �14�

for the unknown vector of coefficients c= 
ci�.
Whenever the solution of an inverse problem is sought, ques-

tions arise concerning the existence and uniqueness of the solu-
tion, and also concerning the well posedness of the problem, i.e.,
the continuity of the dependence of the solution on the problem
parameters, the choice of the basis functions, the number of terms
N in the truncated series, etc.

Within the present regularized formulation of the problem, for
an arbitrary choice of the family of basis functions and arbitrary
number of basis functions N, a unique solution is guaranteed to
exist. This is a consequence of the positive definiteness of the
quadratic functional J. Furthermore, it is clear that increasing the
number of terms N is guaranteed to deliver a sequence of mono-
tonically nonincreasing values of J, i.e., the goodness of approxi-
mation will not be diminished.

An interesting question concerns the convergence of the solu-
tion, e.g., in terms of eigenstrain distribution �*�x�, to the “true”
solution, in the limit N→�. Similarly, the continuity in the be-
havior of the solution with the choice of basis functions deserves
to be discussed. While it must be emphasized that these questions
are clearly fundamental and ought to be addressed, the focus is
currently placed on the development of a practical tool for re-
sidual strain analysis. In sofar as this is the aim of the present
study, the proposed framework offers an efficient “one shot” ap-
proach to the solution the of the inverse problem. Furthermore, the
choice of moderate values N, compared to the number of measure-
ments m, offers a rational procedure for smoothing the data.

5 Results and Discussion
Results of the application of the variational procedure for the

determination of the underlying eigenstrain distribution for speci-
mens B and C of Venter et al. �10� are presented in Fig. 3–8.

In Fig. 3 the markers indicate the experimentally measured re-
sidual elastic strains in the radial direction reported in Ref. �10�.
The continuous curve represents the residual elastic strain distri-

bution predicted by the variational eigenstrain model. It is impor-
tant to note that the reconstructed residual elastic strain profile
shown in this figure is not the result of trying to obtain the best
approximation to the radial strain data alone. Instead the model
prediction must be considered together with the result shown in
Figure 4, where the experimentally measured values of the hoop
strain are compared with model predictions. Note that the func-
tional J was introduced in the previous section as the measure of
the goodness of match to both the radial and hoop strain distribu-
tions simultaneously. As a consequence the procedure minimizes
the total mismatch between the model and experiment measured
as the sum over all of the available data. It is worth noting in
passing that if some additional data �e.g., another set of measure-
ment points� were to become available, the analysis procedure can
be readily repeated, and thus the additional data would be incor-
porated in the analysis.

Figures 5 and 6 contain the experimental data for the radial and
hoop residual elastic strains, respectively, obtained by Venter et al.
�10� from specimen C. Once again, the markers indicate experi-
mental measurement data, and continuous curves show the model
predictions.

In both cases the model provides a satisfactory approximation
to the experimental data, although the agreement is not perfect.
There are several possible reasons for this lack of agreement, most
notable being the uncertainty in the determination of the reference
unstrained lattice spacing d0 that serves as the basis for strain
determination; the possibility of deviation of the reported single
peak diffraction strain from the macroscopic strain values needed

Fig. 7 Eigenstrain profile in specimen B: the distribution de-
termined by variational eigenstrain analysis „markers… and a
parabolic fit „dashed curve…

Fig. 8 Eigenstrain profile in specimen C: the distribution de-
termined by variational eigenstrain analysis „markers… and a
parabolic fit „dashed curve…
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for continuum deformation analysis, and the possibility of large
grain effects on diffraction strain scatter. It is important to note
that the procedure described here is guaranteed to provide the best
possible fit to the experimental data within the functional space
introduced by Eq. �3�.

The solution to the problem is obtained in terms of coefficients
ci, that in turn determine the eigenstrain distributions shown in
Figs. 7 and 8. It is apparent that the eigenstrain distributions decay
to zero at the radial positions c of 46 mm and 50 mm, respec-
tively. This fact can be established using the generic polynomial
functional basis, e.g., using Chebyshev polynomials. Once the
boundary of the eigenstrain distribution zone �equivalent to the
plastic zone boundary� has been found in this way, the quality and
rate of convergence to the solution can be improved. This can be
achieved by amending the choice of the basis functions so as to
reflect the nature of the eigenstrain variation. For example, using a
quadratic multiplier �r−c�2 in the expression

�i�r� = ��r − c�2�
i=0

N

ci�i�r� , r � c

0, r � c
 �15�

ensures smooth decay of the eigenstrain distribution to zero at the
boundary r=c.

An interesting observation on the nature of the eigenstrain dis-
tributions arising in autofrettage can be made on the basis of Figs.
7 and 8, where the variation of eigenstrain with the radial position
from the inner bore is presented for specimens B and C, respec-
tively. The markers indicate the eigenstrain values obtained from
the variational eigenstrain determination procedure, while dashed
curves show parabolic fits to these values. It is apparent that in
both cases the eigenstrain, varies approximately proportionally to
the square of the radial distance from the elasto–plastic boundary.1

Thus it appears that the choice of N=1 in Eq. �15� is sufficient to
obtain an adequate approximation to the measured data. Experi-
mentation with the number of terms in Eq. �15� showed that in-
creasing the number of coefficients to about N=7 or 8 leads to
insignificantly small improvements in the quality of fit, but in-
creasing the number of terms to beyond 10 leads to nonphysical
oscillatory behavior of the solution.

This result suggests that the elasto–plastic problem solution can
be expressed very simply in terms of plastic strain: the process of
progressive yielding of the tube under increasing pressure can be
thought of as the progressive and self-similar development of
eigenstrain distribution. It also suggests that a simple formulation
can be developed for this problem in the form of an elastic prob-
lem with a perturbation term in the form of incompatibility due to
plastic strain. This subject is being studied further by the present
authors.

A final remark is due on the observation by Venter et al. �10�
that the measured distributions indicate the presence of reverse
yielding and Bauschinger effect in the tube material. In the present
study no evidence of such reverse yielding was found. This ob-
servation is substantiated by the simple and smooth form of the
eigenstrain distributions in Figs. 7 and 8. The behavior of residual
elastic strain profiles attributed to reverse yielding may in fact be
associated with the finite and small thickness of the annular slices
studied here: no such behavior was found in the long tube model
of autofrettage when the same eigenstrain distributions found
from variational analysis were introduced into such a model.
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Micromechanics of a Compressed
Fiber Mass
A theory is presented for the rate modeling of flexible granular solids based on affine
average motion of interparticle contacts. We allow contacts to form and break continually
but assume the existence of a finite friction coefficient rendering contacts force free as
they form or break. The resulting constitutive equations are of the hypoelastic type. A
specific model for the deformation of a fiber mass is then developed. The model improves
on previous theories for fiber masses in at least two respects: First, it is more general in
that it is not restricted to uniaxial compression, although it is restricted to predominantly
compressive deformations histories, due to neglect of frictional dissipation. Second, by
allowing torsion as well as bending of fibers, this theory covers a larger deformation
range. Compression experiments are performed on carded slivers of PA6 fibers under
various conditions. The measured response is found to be in close agreement with that
predicted by the model. �DOI: 10.1115/1.2711223�
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Introduction
The mechanical properties of a fiber mass are important in

many fields of engineering such as paper making and composite
manufacturing, and lot of effort has been spent to describe and
model these properties. Schofield �1� described the compressive
behavior of fiber masses with three-dimensional �3D� random ori-
entation, e.g., cotton and wool, and he proposed an empirical
equation where the force response is proportional to the volume
fraction cubed. Van Wyk �2� pioneered the mechanistic analysis of
the compressibility of 3D random fiber masses. Van Wyk regarded
the fiber mass as a system of bending units consisting of fiber
beam elements between adjacent fiber contacts and he ignored
twisting, slip, and extension of the fibers. His key assumptions
were that the mean contact spacing is proportional to the recipro-
cal of the fiber volume fraction and that the segments deform as in
bending of straight slender beams. The result of his analysis is a
simple power law for the compressive stress as

P = ke��3 − �0
3� �1�

where k is a structure dependent constant; e is the Young’s modu-
lus of the fibers; and �0 is the limiting fiber volume fraction
below which P=0. Van Wyk found that his analysis overestimated
the value of k by two orders of magnitude compared to experi-
mental results. He also found that Eq. �1� only holds for moderate
values of ���10% �. Most of the work following van Wyk has
accepted the form �Eq. �1�� and focused on finding an appropriate
expression for k by extending the theories describing the structure
development during deformation. Because the earlier theories
were based on simple regular geometries they cannot be applied to
real structures. Corte and Kallmes �3� suggested a statistical ge-
ometry for a two-dimensional fiber mass, e.g., paper. By extend-
ing the two-dimensional theory, Komori and Makishima �4� de-
rived the number of contact points for a three-dimensional fiber
mass assuming infinite fiber length but without the limitation of
randomness. Lee and Lee �5� used this to derive a model that
allows for structure development. By incorporating slip at con-
tacts Pan and Carnaby �6� could to some extent explain the com-
pression hysteresis exhibited by fiber masses. Komori and Itoh �7�

modified the beam element so that the bending length depended
on the beam element orientation rather than being a universal
mean length. From this modified fiber contact theory and by using
curved beams instead of straight ones, Komori et al. �8� derived
an equation describing uniaxial compression of a random fiber
mass. Neckář �9� derived an expression describing bidimensional
deformation of transversely isotropic fiber masses. Toll �10� sug-
gested a more general power law

P = ke��n − �0
n� �2�

where the exponent, n, was shown to take the value of 3 for the
3D and 5 for the 2D random cases. By adjusting the exponent, Eq.
�2� was shown to fit experimental data for materials where the
contacts between fibers are lines rather than points, e.g., fiber
bundles. It should be mentioned that considerable effort has been
put into deriving the correct number of contact points in a fiber
mass by introducing concepts of forbidden volume or hindrance
factors �11–13�. Nevertheless, since the assumptions used in those
analyses seem unsubstantiated we choose here to use the idealized
model where the number of contacts per fiber is directly propor-
tional to the fiber volume fraction �14�.

The above theories are more or less limited to uniaxial or iso-
tropic compression. Although there have been some attempts to
describe the shear response of fiber masses, e.g., Komori and Itoh
�11�, there seems to be no model for general deformations, e.g.,
combinations of shear and compression. A parallel field of re-
search is granular solids. Although fiber masses belong to this
category, in the sense that they consist of solid particles interact-
ing by contact forces, the two fields have developed quite inde-
pendently. Slender particles are special in two important ways: �1�
they form a network already at very low packing densities, typi-
cally as soon as the average particle is engaged in a few contacts;
and �2� their deformation is due to bending and torsion of particles
rather than the local deformation close to the contact zones. Fiber
masses are thus generally much more compressible than low as-
pect ratio granular solids. Compaction of a fiber mass generates an
ever-increasing amount of contact points, and the topology of the
assembly evolves in the process of deformation by contacts con-
tinually forming and breaking. For this reason their response is
strongly nonlinear and highly strain path dependent. As the topol-
ogy of the network keeps changing, the local stiffnesses governing
the rate of loading of each contact point change as well. This
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makes the statistical modeling of the contact force distribution at a
given instant very difficult and would require following the entire
strain history. The statistical modeling of the contact force rate is
much more feasible as this can be done entirely based on the
current state variables, e.g., the current volume fraction, orienta-
tion distribution, velocity gradient, etc.

This paper therefore proposes a framework for the rate model-
ing of flexible granular solids. The theory is based on affine aver-
age motion of the contact points. Contacts are allowed to form and
break continually, but we assume the existence of a finite friction
coefficient rendering contacts force free as they form or break.
The resulting constitutive equations turn out to be of the hypoelas-
tic type with internal variables �structure tensors�, i.e., the stress is
not obtained from an energy function.

A specific model is then developed for the deformation of a
fiber mass. The work improves on previous theories for fiber
masses in at least two respects: First, the present theory is more
general in that it is not restricted to uniaxial compression, al-
though it is restricted to predominantly compressive deformations
histories, due to neglect of frictional dissipation. Second, by in-
cluding multiple deformation mechanisms, this theory covers a
larger deformation range. By allowing torsion as well as bending
of fibers we succeed in modeling the fiber mass to a higher vol-
ume fraction compared to previous results. We finally specialize to
uniaxial compression and compare the results to compressive ex-
periments on carded polyamide-6 fibers of different diameters.
The compression experiments were performed in a novel triaxial
rheometer for soft compressible solids, developed in-house �15�.
The rheometer is particularly suitable for materials having a large
characteristic length, such as fiber masses, in that edge effects at
the perimeter of the sample are effectively eliminated.

Granular Solids
A granular solid consists of solid particles which interact by

mechanical contact; all stress being transmitted across contact sur-
faces from one particle to another. Since the contact areas are
usually small compared to particle dimensions, the contact surface
traction n ·� is approximately concentrated to a contact point

n · � = p��x − r� �3�

where n is the unit normal of a contact point; � is the contact
stress; r is the position; and p is the contact force. The Dirac delta
function, �, has the properties, ��t�=0 for t�0, limt→0��t�=� and
�0

���t�dt=1. Each particle is thus subjected to a set of discrete
forces exerted on its surface by its contacting neighbors and the
equilibrium conditions are

� p = 0

and

� r � p = 0 �4�

where the sums are taken over all contacts of a particle. The
continuum description of a granular solid presumes a representa-
tive volume, V, small enough that the macroscopic velocity gra-
dient is constant �within some acceptable error� on the scale of V.
Thus placing an origin somewhere inside V, the macroscopic ve-
locity field within V may be written

V�x� = V�0� + L · x �5�

where L= ��V�t is the spatial velocity gradient. In the quasistatic
conditions given by Eq. �4�, as has been shown by many authors,
e.g., Love �16�, the average stress � �macroscopic Cauchy stress�
is

� =
1

V
sym � pr �6�

where the summation is carried out over all contact points on all
particles in V. Notice that each contact gives rise to two contact
points, one on each particle, with associated contact force and
normal �p ,n� and �−p ,−n�, respectively. It also should be pointed
out that the contact vector r need not refer a common origin, but
may be defined locally for each particle.

Most theories take the view that the contact mechanics are pri-
marily controlled by the orientation of the contact plane, and ex-
press the stress in terms of the distribution of the normal vector n

� = N sym� pr�n���n�dn �7�

where N is the number of contacts per unit volume; ��n� is the
probability density of n; and the overbar denotes the average over
all contact points of orientation n. One usually makes the critical
assumption �17� that p and r are uncorrelated �for n fixed�, allow-
ing the separation

pr�n� = p̄�n�r̄�n� �8�
whereupon the problem reduces to modeling the expectations of
contact force and contact vector at a fixed unit normal, p̄= p̄�n�
and r̄= r̄�n�. Typically, this is done by linking r̄�n� directly to
macrostrain or p̄�n� to macrostress �18�, and applying some non-
linear contact law, f�r̄ , p̄ ,n�=0, at the contact points, such as
Emeriault and Cambou �18� or Norris and Johnson �19�, or even a
linear relation, e.g., Alzebdeh and Ostoja-Starzewski �20�. Norris
and Johnson �19� also discuss the fundamental strain path depen-
dence of granular solids. Path dependence may obviously result
from frictional slip but, curiously, it may also occur without dis-
sipation. Indeed if a granular solid is loaded to a given strain
along a strain path which is consistently dominated by compres-
sion, the strain energy will depend on the strain path, yet unload-
ing by retracing the same path, may still return all the energy. This
type of response is essentially hypoelastic �21� �although Norris
and Johnsson call it elastic� and hence requires a rate theory.

A Rate Theory for Granular Solids
Consider a contact between two particles, one of which is con-

sidered as test particle. The dynamics of the contact will depend
on the entire geometric configuration in a volume enclosing the
two contacting particles and several others. Since the complete
configuration cannot be specified the contact configuration must
be described by a limited number of contact variables, such as the
contact normal n, and the contact force p will be a stochastic
function of those variables. The contact variables should include
at least the contact vector r, defined as the position of the contact
point with respect to an origin �e.g., the centroid� of the test par-
ticle, and the contact normal n, defined as a unit vector along the
outward normal to the test particle surface at the contact point.
Naturally, neither of these need be included explicitly, provided
that they are uniquely defined by the contact variables used.

Now make the following assumptions:

1. The contact force vanishes as the normal force goes to zero;
and

2. The expectation of the contact displacement rate ṙ for a
given set of values of the contact variables is affine

r̄̇ = r̄̇�r,L� = L · r �9�
where the overbar denotes the conditional expectation given
the contact variables �r ,n , ¯ �.

The first assumption implies ideal friction in the sense that the
contact surfaces are smooth and adhesion free. The second as-
sumption is a weaker, and more realistic, form of the common
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affine assumption, ṙ=L ·r. Next we write Eq. �6� as

� = N sym�p̄r	c �10�

where N is the number of contacts per unit volume �defined such
that each contact point is counted twice; once for each particle
involved� and the angle brackets �·	c denote an average over all
possible values of the contact variables. Notice here that since
pr= p̄r, not by assumption but because r is one of the contact
variables, the assumption in Eq. �8� is not needed. Presently, with
the restricted set of contact variables �r ,n , ¯ �, the average is

�·	c = � � �·���r,n, ¯ �dr dn¯ �11�

��r ,n , ¯ � being the probability density of the configuration
�r ,n , ¯ �, subject to the normalization condition

� � ��r,n, ¯ �dr dn ¯ = 1 �12�

Now time differentiation of Eq. �6� yields

d�

dt
= sym
−

1

V2

dV

dt � pr +
1

V

d

dt
�� pr�� �13�

The first term on the right-hand side, in view of Eq. �6�, is just
�� :L��. Due to the assumed frictional nature of the contact forces
�Assumption 1�, contacts in the process of being formed or broken
must be force free, and hence the differential operator in the sec-
ond right-hand side term may be moved inside the summation
sign. Finally Assumption 2 implies that pṙ= p̄r ·Lt. The general
affine rate equation thus takes the general form

�̇ + ��:L�� = N sym��p̄r	c · Lt + �p̄̇r	c� �14�

As p̄̇ is the average of ṗ over all contact points with a given
configuration �r ,n , ¯ �, it may only depend on r ,n ,¯ and mac-
roscopic field variables such as L

p̄̇ = ��r,n, ¯ ;L, ¯ � �15�

The force rate function � constitutes the kernel of the constitutive
equation, Eq. �14�. This function must be a three-dimensional vec-
tor and have the dimension of force per unit time.

We must now ensure that the function ��r ,n , ¯ ;L , ¯ � is in-
different to an arbitrary time dependent rotation �change of the
observer’s motion� Qt=Qt�t� applied to all objective quantities

r* = Q · r �16�

p* = Q · p �17�

n* = Q · n �18�

ṗ* = Q · ṗ + Q̇ · p �19�

L* = Q̇ · Qt + Q · L · Qt �20�

where the asterisk denotes a change of reference frame. This
frame indifference may be expressed as

p̄̇* = p̄̇�r*,n*, ¯ ;L*, ¯ � �21�

Combining all the above yields the condition,

p̄̇�Q · r,Q · n, ¯ ;Q̇ · Qt + Q · L · Qt, ¯ �

− Q · p̄̇�r,n, ¯ ;L, ¯ � − Q̇ · p̄ = 0 �22�

It may also be verified that the resulting constitutive equation �Eq.
�14�� is material frame indifferent if and only if this condition is
satisfied.

Fiber Mass Model
Having formulated the rate theory, we are in a position to con-

struct a specific model of a fiber mass. Figure 1 shows a scanning
electron microscope �SEM� graph of a carded sliver of 50 �m
diameter PA6 fibers. In general one would have to treat each fiber
as a particle �in the sense of the previous section�. When the fibers
are slender and crooked, such a description would be very com-
plex indeed. Instead we assume that the fiber is divisible into
roughly straight segments, �Fig. 2�, which can be treated as inde-
pendent particles. The validity of such a description requires that
the contact spacing along a fiber be smaller than the length scale
on which the fiber can be considered straight �the crimp spacing
2b in Fig. 2�, so that the stress due to the contact forces on the
segment is much larger than that due to the load from the rest of
the fiber. This may not seem to be the case judging from Fig. 1,
but it should be appreciated that the material in the micrograph is
only about 1% volume fraction. At 10% volume fraction the num-
ber of contacts between crimps is about eight. Several other ob-
jections can be raised against this proposition; perhaps most im-
portantly it presumes independent rotation of segments belonging
to the same fiber. Furthermore, slip is considered absent and the
degree of alignment is assumed to be moderate.

Fig. 1 SEM micrograph of carded polyamide-6 fibers with a
diameter of 50 �m

Fig. 2 Segmentation of a fiber where 2b is the crimp spacing
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Introducing a set of local orthonormal basis vectors for each
contact point n, e, and � relative to the fiber axis and contact
normal �Fig. 3�, and resolving r and p on this basis yields

r = rnn + ree + r�� �23�

p = pnn + pee + p�� �24�

Our choice of contact variables will be the axis orientations e and
e� and the position vectors r and r� of the two contacting fibers.
Notice that n is not needed as a contact variable, since it is deter-
mined by the other ones. The expectation = �e ,e� ,r ,r�� then re-
fers to fixed values of these variables. We now make the simplest
choice of convected force rate that satisfies the frame-indifference
condition Eq. �22�:

p̄̇ = �ṗnn + ṗee + ṗ��� + L · p̄ �25�

In fact this choice is inconsistent with maintaining orthonormality
of the basis vectors, adding an unphysical convected-force contri-
bution to the force rate, which may be considerable in shearing
deformations. However, it will offer considerable simplification,
and it should work as long as the deformation is predominantly
compressive. Introducing this in Eq. �14�, we obtain

�
	

= N�ṗnrnnn + ṗereee + ṗ�r���	c:L �26�

where

�
	

= �̇ + ��:L�� − � · Lt − L · � �27�

is an objective stress rate, known as the Truesdell stress rate �22�.
In Eq. �26�, since the probability density ��e ,e� ,r ,r�� and ṗn, ṗe,
ṗ� are even functions of e, e�, n, and �, and rn, re, and r� are
positive, all odd terms such as �ṗnrene	cvanish.

Based on the neglect of slip, we now relate the force rates ṗn,
ṗe, and ṗ� to the principal displacement rates through

ṗn =
ṙn

�sn	c

�28�

ṗe =
ṙe

�se	c

�29�

ṗ� =
ṙ�

�s�	c

�30�

where sn, se, and s� are compliances of a given contact, defined as

sn =
�rn

�pn
, se =

�re

�pe

and

s� =
�r�

�p�

�31�

We thus let the force rates be controlled by the average compli-
ance of all contacts rather than the local compliance of a particular
contact. In other words dri /dpi��si	c��ri /�pi=si. Notice here
the importance of assuming affine expectations of motion r̄̇
=L ·r �Eq. �9�� rather than affine motion ṙ=L ·r. If we were to
make the latter assumption, the freedom to specify Eqs. �28�–�30�
would be lost, as these relations would necessarily have to be ṗi

= ṙisi
−1 and the model would become severely overstiff. Moreover

the stiffer contacts would contribute excessively to the total aver-
age. In the case of a stiffer contact surrounded by more compliant
contacts, the latter are likely to take a major part of the deforma-
tion.

By inserting Eqs. �28�–�30� into Eq. �26� we have

�
	

= N �rnṙnnn	c

�sn	c

+
�reṙeee	c

�se	c

+
�r�ṙ���	c

�s�	c
�:L �32�

The principal displacement rates are now assumed to be equal to
the stretch rates in the n, e, and � directions, respectively

r̄̇n = rnnn:L �33�

r̄̇e = reee:L �34�

r̄̇� = r���:L �35�
yielding

�
	

= N
 �rn
2nnnn	c

�sn	c

+
�re

2eeee	c

�se	c

+
�r�

2����	c

�s�	c
�:L �36�

Finally using the assumption that rn, re, and r� are all approxi-
mately independent of n, e, and � �this is exact for random and
planar random orientation�, one obtains

�
	

= N
 �rn
2	c

�sn	c

�nnnn	c +
�re

2	c

�se	c

�eeee	c +
�r�

2	c

�s�	c

�����	c�:L �37�

where �nnnn	c, �eeee	c, and �����	c are fourth-order structure
tensors.

Structure Tensors
There are several possible ways of forming a fiber network, and

the network structure may depend on this route. Here the assem-
bly is assumed to be statistically homogeneous, and disperse in
the sense that there is no correlation between the spatial and ori-
entational distributions. We adopt the approach of Toll �10� and
consider a network formed by random placement of fibers in
space, with no restriction of interpenetrating fibers by bending,
thus turning each interpenetration into a contact point �10,14�.
Thus the contact points in the network of interpenetrating fibers
are modeled as the volume intersections in a random network of
interpenetrating ones. The benefit of this model is that the prob-
abilities of such volume intersections can be obtained exactly.

Fig. 3 Schematic of a contact point with the local basis vec-
tors e, n, and � indicated. The primed basis vectors refer to the
contacting fiber.

726 / Vol. 74, JULY 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Now consider a fiber population having the overall probability
density 
�e� of the fiber axis orientation vector e. Since the prob-
ability density of intersection of two fibers of orientation e and e�
must be proportional to �e�e� �
�e�
�e�� and independent of r
and r� it immediately follows from the normalization condition,
Eq. �12�, that

� � ��e,e�,r,r��dr dr� =
�e � e��
�e�
�e��

� � �e � e��
�e�
�e��de de�

�38�

Hence the average over all contact configurations of a quantity
q�e ,e�� that is independent of r and r� may be written as

�q	c = � � � � q�e,e����e,e�,r,r��de de� dr dr�

=
1

f � � q�e,e���e � e��
�e�
�e��de de� �39�

where

f = � � �e � e��
�e�
�e��de de� �40�

In particular, for 3D random orientation f3D=� /4 and for 2D
random orientation f2D=2/�. Now the average of eeee taken over
all contacts is

�eeee	c =
1

f � � eeee�e � e��
�e�
�e��de de� �41�

This tensor should not be confused with the so-called fourth-order
orientation tensor; �eeee	c is averaged over contact points,
whereas orientation tensors are averaged over fiber orientations.
Similarly the fourth order average of the contact normal n is

�nnnn	c =
1

f � � nnnn�e � e��
�e�
�e��de de� �42�

where n is given by

n = ±
e � e�

�e � e��
�43�

The fourth-order average of transverse tangential vector � is

�����	c =
1

f � � �����e � e��
�e�
�e��de de� �44�

where � is given by

� = ±
e � n

�e � n�
�45�

Notice that all these averages are based on the orientation distri-
bution function, 
�e�. Hence provided that 
�e� is obtainable in
some form, e.g., discretized or as an approximate function, it will
be straightforward to compute the structure tensors �nnnn	c,
�eeee	c, and �����	c.

The orientation distribution will be modeled here by assuming
affine rotation of the fiber axes

ė = L · e − eee:L �46�

For a given reference configuration, this may be written in terms
of the deformation gradient, F=�X /�Xr

e =
F · er

�er · Ft · F · er

�47�

where the index r refers to the reference configuration. We will
always start our computations from a state of very small packing
fraction and isotropic orientation, assuming that the real fiber
mass structures can be obtained in this way.

Contact Compliances
To estimate the compliances defined by Eq. �31� we identify

two sources of contact force: fiber bending and fiber torsion. The
normal compliance sn is governed by bending of the test fiber
�unprimed fiber�, which is described as a generic Euler beam

sn =
�rn

�pn
=

�3

6�kbea4 �48�

where e is the fiber Young’s modulus; a is the fiber radius; and �
is the contact spacing, i.e. the fiber length between two adjacent
contacts. The geometric constant kb is unity if the beam is loaded
at its midsection and fixed at its end sections. The transverse com-
pliance is governed by torsion and bending of the test fiber

s� =
�r�

�p�

=
16�

3�ktea2 +
�3

6�kbea4 �49�

where the geometric constant kt is unity for a simple torsion bar
loaded by a couple ap� at its midsection and fixed at its end
sections. The axial compliance is governed by torsion and bending
of the contacting fiber

se =
�re

�pe
=

16��

3�kte�a�2 +
��3

6�kbe�a�4 �50�

where the primed quantities refer to the contacting fiber. In all the
three above equations, it is only the contact spacing, �, that is not
a contact variable or a constant.

The magnitude of the elements of the position vector is as-
sumed to be

rn � r� � a �51�
and, assuming a random distribution of contacts along a fiber

re � xb �52�

where b is half the crimp spacing �Fig. 2� and x is a stochastic
variable randomly distributed in the interval 0x1. In order to
allow for a fiber size dependence the crimp spacing will be as-
sumed to be directly proportional to the fiber size a

b = �a �53�

where � will be called the crimp ratio. Due to the random distri-
bution of contacts, the distribution of the contact spacing � is
exponential

f��� =
1

�̄
e

− �

�̄ �54�

and the third moment of � is

�3 = �̄−1�
0

�

�3e
− �

�̄d� = 6�̄3 �55�

Now, the compliance related averages in Eq. �37� are

�rn
2	c

�sn	c

= 6�kb
�a2	c

�e−1a−4�3	c

= �kb
�a2	c

�e−1a−4�̄3	c

�56�

�r�
2	c

�s�	c

=
�a2	c

16

3�
kt

−1�e−1a−2�̄	c +
1

�
kb

−1�e−1a−4�̄3	c

�57�
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�re
2	c

�se	c

=
�2�a2	c

16

�
kt

−1�e−1a−2�̄	c +
3

�
kb

−1�e−1a−4�̄3	c

�58�

For constant fiber size a, the expected contact spacing �̄, in terms
of the fiber volume fraction �, is �e.g., Ref. �10��

�̄�e� =
�a

4f�e��
�59�

where f�e�= � �e�e� �
�e��de�. The number of contacts per unit
volume is �e.g., Ref. �10��

N =
4f�2

�2a3 �60�

where f is defined by Eq. �40�. Multiplying Eqs. �56�–�58� with N
and assuming that �f�e�−1	c� f−1 and �f�e�−3	c� f−3 �this is
mostly true, see Fig. 4, and is exact for random, planar random,
and unidirectional orientation�

N
�rn

2	c

�sn	c

=
256kbe

�4 f4�5 �61�

N
�r�

2	c

�s�	c

=
e

 3

�2ktf
2�3�−1

+ 256

�4 kbf4�5�−1 �62�

N
�re

2	c

�se	c

=
e�2

 1

�2ktf
2�3�−1

+  256

3�4kbf4�5�−1 �63�

Clearly, provided that �2�1 and �eeee	c������	c, the tangen-
tial component may be neglected. Hence the final result is

�
	

= �256kbe

�4 f4�5�nnnn	c

+
e�2

 1

�2ktf
2�3�−1

+  256

3�4kbf4�5�−1 �eeee	c�:L �64�

where �
	

is given by Eq. �27�. Perhaps the greatest uncertainty of
this model is in the loading conditions of the beam elements,

therefore the constants, kb and kt, will be used rather as correction
parameters and will be determined experimentally.

Computation for Uniaxial Compression
Equation �64� can be applied to various kinds of fiber mass and

deformation. Here, however, we will focus on uniaxial compres-
sion, because we suspect that violating the orthonormality of the
basis vectors �Eq. �25�� is unrealistic in shearing deformations but
acceptable in compressive deformations. In the uniaxial case, only
one component of each structure tensor is needed: �n3n3n3n3	c and
�e3e3e3e3	c. Moreover, our parallel-plate instrument allows us to
measure the true stress response in uniaxial compression.

For uniaxial compression in the 3-direction, the macroscopic
velocity gradient may be expressed in terms of the rate of change
of the fiber volume fraction

L33 = −
�̇

�
�65�

To examine the resulting stress component �33=−P we specialize
Eq. �64� accordingly

dP

d�
+

P

�
= ef4�4�256kb

�4 �n3n3n3n3	c

+
�2�e3e3e3e3	c

 1

�2ktf
−2�−2�−1

+  256

3�4kb�−1� �66�

In the special case of a planar fiber mass, we have �n3n3n3n3	c

=1 and �e3e3e3e3	c=0, which yields

P =
128

3�4kbef4�5 �67�

This result coincides with an earlier result for planar fiber masses
�23� with kb�2.4.

A nonrandom initial orientation is modeled by a fictitious initial
deformation F0 relative to a reference configuration Fr=� in
which the orientation is taken to be random ��r=� /4�. In this
way the initial orientation distribution �0 is simply controlled by
the choice of initial deformation F0 or, equivalently, by the choice
of reference configuration. For the uniaxial compression of a fiber
mass with random in-plane orientation we thus have

F11 = F22 = 1

and

F33 =
�r

�
�68�

At any given deformation, F, the orientation distribution is ob-
tained by applying Eq. �47� to each fiber in a reference set of 3000
fibers, having random orientation. The structure tensors are then
numerically computed from this set using Eqs. �41� and �42�. In
Fig. 4 the computed values for �n3n3n3n3	c, �e3e3e3e3	c and f ,
starting from a 3D random fiber mass, are plotted versus the de-
gree of compression, in this case indicated as � /�r. As expected,
when � /�r=1 and � /�r→� the computed orientation is 3D
random and 2D random, respectively.

The result using kb=kt=1 for an initially 3D random fiber mass
��r=�0� is plotted in Fig. 5 for some different values of the
crimp ratio ��=b /a�. Compared to the van Wyk equation �Eq. �1�
with k=0.01�, the shape of Eq. �66� differs above a fiber volume
fraction of approximately 0.1. This is probably due to the transi-
tion from a 3D to a planar structure, where P��5 is expected
�10�.

Fig. 4 Evolution of some structural parameters for an initially
3D random fiber mass during uniaxial compression
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Experiment
Measuring stress–strain relations with conventional parallel

plate techniques is associated with inaccuracies due to free edge
effects �15�. This is especially true for materials with a coarse
microstructure. Using the fact that the free edge effect decays
away from an edge, we have constructed a parallel-plate instru-
ment �15� where the stress is measured by means of a local stress
transducer in a region away from the sample edges, where the
strain field is uniform �Fig. 6�. The newly developed stress trans-
ducer is triaxial, measuring the in-plane shear stresses as well as
the compressive stress. Here, however, only the compression axis
is used.

The sample is fixed between the transducer head and an x, y, z
table and then deformed by imposing a horizontal and/or a vertical
displacement on one plate relative the other. The relative plate
displacement in the z direction is detected by means of high ac-
curacy laser sensors and the resolution of the resulting strain is
well within ±0.1% for a sample thickness of at least 1 mm. The

output signals from the load cell and the laser sensor are digitized
and recorded by a computer. The load cell sensitivity is about
10−1 kPa in compression.

Four separate fiber masses, consisting of polyamide-6 fibers of
different fiber diameters 27, 35, 50, and 67 �m, were studied. The
material was carded in a laboratory carding machine, CORMA-
TEX model CC/400, to a pile. The fiber diameter was uniform
within each pile. The surface weight of the piles was
0.06 g/cm2±10%. The samples were cut out of the piles using a
punching machine. To erase the stress history from the carding
and storage, the samples were compressed to a pressure of P
=100 kPa and then unloaded to P=80 kPa. Compression data
were sampled in the parallel-plate instrument at a constant dis-
placement rate of 50 mm/min, a constant temperature of 21.0°C,
and a relative humidity of 31%. To study the effect of the relative
humidity on the Young’s modulus, e, of the monofilaments, their
tensile behavior was measured in a RheoMetrics RSA II at five
different humidity levels, 5%, 21%, 24%, 32%, and 95% relative
humidity �RH�, at a constant strain rate of �̇=10−3 s−1. The fibers
were conditioned for at least 2 h. Counting the number of crimps,
n, on fibers of a total length, l, gave a mean crimp spacing of
2b= l /n.

Fig. 5 Uniaxial compressive stress P=−�33 versus volume
fraction �. The dotted line is the van Wyk equation with k
=0.01.

Fig. 6 Schematic of sample deformation and the resulting
stress distribution �33/�33

	 in compression. The objective is to
measure the asymptotic stress, �33

	 , far from the edge.

Fig. 7 The RH dependence of the elastic modulus, e, for PA-6
monofilaments. The dotted line is an arbitrary curve fit.

Fig. 8 Tensile data for PA6 monofilament at 24% RH. The
straight line indicates the initial elastic modulus, e.
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Results
The results of the monofilament elastic modulus measurements

at different humidity levels are summarized in Fig. 7. The value of
e decays exponentially with increasing humidity, as should be
expected. Different monofilament diameters did not have any in-
fluence on the measured values of e. Figure 8 shows a typical
tensile stress–strain curve �average of five separate monofila-
ments�.

Figures 9 and 10 present data from the compression experi-
ments. Each plot represents the average of ten different samples.
The dotted lines are fits of Eq. �66� to the experimental data. The
resulting values of the parameters are presented in Table 1. As
discussed in the previous section, the structural parameters were
computed from a reference state with 3D random orientation. Im-
age analysis of the pile surface after carding revealed a very close
to isotropic orientation of fiber segments. Hence we simply let the

reference volume fraction �r be the volume fraction of the pile as
carded. It is difficult to determine any precise volume fraction of
the unloaded pile, but this volume fraction appeared to be propor-
tional to the limiting volume fraction �0. The latter is taken as the
volume fraction where a nonzero compressive stress is first regis-
tered, and is straightforward to determine from experimental data
�Figs. 9 and 10�. Hence, we chose to hold the ratio constant at
�0 /�r=23/4, corresponding to �r�0.8%. The initial condition
of the numerical computation of the pressure response was P=0 at
�=�0.

As anticipated, the fiber mass response in compression at higher
volume fractions ��12% � is independent of the fiber diameter,
i.e., kb is constant, provided that the fiber diameter is uniform and
the fibers are slender. This suggests �as the Young’s modulus is
constant� that the fiber orientation at a certain fiber volume frac-
tion is close to identical for the different samples used here. The
experimental value of the bending correction parameter is kb
�2.2, irrespective of fiber radius. At lower volume fractions
��8% � the main contribution to the total fiber mass response
comes from the last term in Eq. �66�, which involves all adjustable
parameters �kb, kt, ��. The resulting experimental value of the
torsional correction factor was kt�0.05 for all tested materials.
Finally, the crimp ratio, �, seems to be constant irrespective of
fiber radius, suggesting that the assumption of proportionality be-
tween crimp spacing and fiber radius is correct. The experimental
value of the ratio, ��29, corresponds to a crimp spacing of
0.8–1.9 mm for the tested materials �Table 1�. These values of b
are in very good agreement with the measured values of the crimp
spacing �Table 2�. Above all, the theoretical estimate according to
Eq. �66� is in excellent agreement with the experimental data.

A benefit of using polyamide fibers was that their elastic modu-
lus, e, could be varied by controlling their moisture content. In
this way it was possible to study the effect of changing e without
changing the network structure �ignoring the volume change of
the fibers�. A change in the Young’s modulus results in a linear
shift of the compression curves, again in agreement with the
theory.

Discussion
When comparing the model predictions with the experimental

data in Figs. 9 and 10, it should be appreciated that there is really
only one adjustable parameter needed: kb. The value of kt plays a
minor role, and only matters in the region where the curve in-
creases its slope �around ��0.1�. The limiting volume fraction
�0 only affects the initial rise of the curve and, finally, the crimp
spacing 2b may be taken as measured from the micrographs.

The magnitude of the correction factor kb is quite close to unity,
thus supporting the modeling of a deformation element as a beam
with fixed ends and central loading. The assumption of fixed end
sections probably overestimates the stiffness while loading at the
midsection probably underestimates it. The torsional stiffness fac-
tor kt, on the other hand, is far below unity. The most likely
explanation is that the fixed-end condition is inadequate in this
case. Because the actual torsional compliance is so high, the con-
tribution of this mechanism to the overall response is nearly neg-
ligible.

A critical assumption in our derivation is the no-slip condition
at contacts. In compressive deformations of a close to planar fiber
mass, the normal force will be large compared to the tangential
force on the vast majority of contacts. In such circumstances, slip
is an unlikely event, and frictional dissipation may be neglected.

Fig. 9 Compression data for a fiber mass consisting of fibers
with d=35 �m

Fig. 10 Compression data for a fiber mass consisting of fibers
with d=50 �m

Table 1 Fitted parameters

2a ��m� 27 35 50 67

�0
0.022 0.023 0.022 0.024

kb
2.2 2.2 2.2 2.2

kt
0.05 0.05 0.05 0.05

2b �mm� 0.8 1.0 1.5 1.9

Table 2 Measured crimp spacing

2a ��m� 27 35 50 67

2b �mm� 0.9 1.2 1.7 2.1
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However, in shearing and tensile deformations slip will occur
whenever the tangential contact force overcomes the friction. The
overall stress at which a certain contact point will slip depends on
the contact configuration.

The assumption of affine rotation of the fiber axes, Eq. �46�, is
a strong simplification. It presumes that all fiber segments having
the same orientation rotate equally when the fiber mass is de-
formed, independently of the fiber segment surroundings. First
this implies no steric hindrance from neighbors, which may be
realistic for low fiber volume fractions but unrealistic at higher
fractions. However, in our experiments, the orientation at higher
volume fractions is close to planar and the orientational param-
eters are either close to constant or close to zero. In this way the
effect of steric hindrance is probably reduced. Second it implies
that no restrictions are imposed on a fiber segment by the rest of
the fiber to which it is linked. This is a clearly unphysical effect,
implicit in all current models that account for change of orienta-
tion �5–8,10,11�. Since the orientation evolution is computed
separately in our approach, a more advanced model for this could
easily be introduced. In terms of modeling the stress at any given
orientation state, the assumption of independent straight fiber seg-
ments should be valid as long as the fiber crimp length is large
enough that each segment holds sufficiently many contacts that
the forces transmitted across segment ends may be neglected.

Introducing the assumption that the expectation of the contact
displacement rate r̄̇ is affine �Eq. �9�� implies that the average
displacement of contacts with a certain configuration only de-
pends on the macroscopic velocity gradient. The alternative of
describing the motion of each contact is clearly not feasible within
an analytical approach.

Conclusions
The proposed model has been tested for three-dimensionally

oriented fiber masses in uniaxial compression. The model success-
fully describes the response over a wider range of compressive
strain than earlier models. It coincides with earlier models, such as
the van Wyk model, in the appropriate regime. The model in-
volves four adjustable parameters, but all of those have a clear
physical meaning, and can be estimated independently. The ex-
perimental values of the correction factors kb and kt are reasonably
close to their theoretical estimates and thus advocate our choice of
deformation mechanisms, bending, and torsion of the fibers be-
tween contacts. The close correlation between the measured val-
ues of the segmental length b and the values obtained by fitting
the model to compression experiments further support this choice.

Our treatment of fiber orientation is rudimentary and leaves
ample room for further development. The simplifying assumption
of affine rotation of the fiber segment axes is crude, but the per-
haps most important is to determine the actual initial orientation
of the fiber mass. In the present, we had to assume that the initial
orientation of the fiber mass is approximately random.

Our possibly most serious assumption is the unrealistic choice
of convected force rate �Eq. �25�� which does not maintain ortho-

normality of the basis vectors. Apparently, from the experimental
results, this is not a problem in the case of uniaxial compression.
Nevertheless it would most likely add an inaccurate convected
force contribution to the contact point force rate in shearing de-
formations. To describe properly more general deformations one
would need a more realistic �and more complicated� convected
force rate which conserves the orthonormality of the basis vectors.
In addition it may be necessary to incorporate frictional dissipa-
tion at the contact points, which is ignored in the present. The
latter is likely to be a considerable challenge.
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A Preconditioning Mass Matrix to
Avoid the Ill-Posed Two-Fluid
Model
Two-fluid models are central to the simulation of transport processes in two-phase ho-
mogenized systems. Even though this physical model has been widely accepted, an in-
herently nonhyperbolic and nonconservative ill-posed problem arises from the math-
ematical point of view. It has been demonstrated that this drawback occurs even for a
very simplified model, i.e., an inviscid model with no interfacial terms. Much effort has
been made to remedy this anomaly and in the literature two different types of approaches
can be found. On one hand, extra terms with physical origin are added to model the
interphase interaction, but even though this methodology seems to be realistic, several
extra parameters arise from each added term with the associated difficulty in their esti-
mation. On the other hand, mathematical based-work has been done to find a way to
remove the complex eigenvalues obtained with two-fluid model equations. Preconditioned
systems, characterized as a projection of the complex eigenvalues over the real axis, may
be one of the choices. The aim of this paper is to introduce a simple and novel math-
ematical strategy based on the application of a preconditioning mass matrix that circum-
vents the drawback caused by the nonhyperbolic behavior of the original model. Al-
though the mass and momentum conservation equations are modified, the target of this
methodology is to present another way to reach a steady-state solution (using a time
marching scheme), greatly valued by researchers in industrial process design. Attaining
this goal is possible because only the temporal term is affected by the preconditioner. The
obtained matrix has two parameters that correct the nonhyperbolic behavior of the
model: the first one modifies the eigenvalues removing their imaginary part and the
second one recovers the real part of the original eigenvalues. Besides the theoretical
development of the preconditioning matrix, several numerical results are presented to
show the validity of the method. �DOI: 10.1115/1.2711224�

Keywords: two-fluid model, ill-posed problems, multiphase flow

1 Introduction
A multi-phase flow denotes a continuum where more than a

single phase is present, e.g., gas bubbles rising in a liquid, droplets
of fluid moving in a gas, steam–water flows in a boiler, pipeline
transport of gas, and oil mixtures and oil–gas–water flows in an
oil well. These examples are found in a great variety of industrial
and technological applications such as chemical reactors, boilers,
combustion chambers, steelmaking plants, and nuclear power
plants devices. According to the geometry of the interface, a two-
phase flow can be classified into three types �see Ishii �1��: sepa-
rated flows, transitional or mixed flows, and dispersed flows, with
significant differences in their behavior.

When modeling a biphasic flow, it is necessary to know what
phenomena, effects, and flow structures are important. In some
cases, the exact structure or position of the interface is important,
while in other cases only some kind of average quantity is needed
for the flow analysis.

Models for two-phase flows can be categorized into two differ-
ent groups. The first group is the so called interface tracking mod-
els �ITMs�, which track the interface between the two phases, and
are well suited for separated flows. The most frequently employed
Eulerian-based ITM for predicting certain classes of multiphase
flows are the volume of fluid �VOF� method �2–7�, the front track-
ing �FT� or immersed boundary method �8,9�, the level set �LS�
methods �10–13�, and the phase field �PF� methods �14–16�.

Ideally, one would like to track the interface between the phases
at all times, which is similar to solving all relevant scales of
turbulent single-phase flow direct numerical simulation �DNS�.
However, this is often computationally too expensive and some-
times redundant for dispersed flows. Thus, in the second group of
models, the exact position of the interface is not followed accu-
rately and only spatial distributions of volume-averaged quantities
such as the void fraction and the velocity field for the dispersed
phases are calculated. Dispersed flows are usually modeled using
models from this second group.

Two generic approaches can be used for modeling dispersed
flows: the Lagrangian and the Eulerian formulation. For particu-
late �or particle-like� flows, it is possible to build methods based
on the marker and cell �MAC� scheme �see Ref. �17��. The general
idea is to follow each particle of the dispersed phase as it is
transported by the continuous phase. This approach, in which the
continuous phase is calculated in a Eulerian reference frame, is
referred to as a Lagrangian–Eulerian formulation.

A different way of modeling dispersed flows is to treat both
phases as a continuum. This is generally referred to as the
Eulerian–Eulerian formulation or the two-fluid model. In this
model, discussed in detail by Ishii �1�, each phase has its own set
of balance equations and the interaction between phases is repre-
sented via interface transfer terms that arise from the constitutive
relations. Therefore, both phases are present in each point of the
domain, each one with an associated volume fraction.

In this study, the two-fluid model is chosen to simulate dis-
persed biphasic flows and a mathematical analysis of this model is
presented in the next sections. It is well known �see Ref. �18�� that
in a mathematical sense this model is ill posed because its hyper-
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bolic nature may not be warranted for all the flow parameters.
Furthermore, the model is questionable for its nonconservative
formulation �19� and nonlinear terms make the problem more
complex for the analysis.

Numerical solutions of ill-posed two-fluid problems have two
drawbacks: excessive numerical diffusion and instabilities. These
situations are common for ill-posed initial boundary value prob-
lems �see, e.g., Ref. �20�� and, therefore, the success of any
method depends on the requirement that such systems be well
posed.

It is important to make a distinction between nonhyperbolic
problems considered in the present work and another class of
problems that address loss of hyperbolicity due to a change of
type in the partial differential equations. Change of type problems
are a separate subject of mathematical analysis, which is related to
how the information propagates between the hyperbolic and ellip-
tic domains �20�.

A lot of effort has been made to remedy the nonhyperbolic
anomaly of the two-fluid model and two different approaches can
be found. One is based on the physics of the problem and consists
of adding extra terms to the interfacial interaction, thus searching
for a physical solution to the nonhyperbolic behavior. Even
though this methodology seems to be realistic, several extra pa-
rameters arise from each added term with the associated difficulty
in their estimation �21�. One of the usually added terms, which
produces significant improvement in the parameter range when
the problem is well posed, is the interfacial pressure. This en-
hanced model relaxes the assumption of equal pressure for both
phases and the introduction of two pressures is justified noting
that the pressure of the continuous phase, computed by the two-
fluid model, is far away from the unresolved flow around a
bubble. This seems logical since the two-fluid model aims are not
to solve the details of the flow close to individual bubbles. In this
sense, Lahey �22� has reached very promising results for air–water
systems finding well posedness for all void fractions with very
large densities ratios using as a necessary condition that Cp
�0.166 �pressure coefficient in the pressure jump at interface�.
However, this lower bound may be in conflict with the results
obtained by Drew and Passman �18� for highly viscous flow,
where they found that Cp should be negative. Other contributions
using different pressures for each phase that allows us to extend
the range of parameters for which the problem is hyperbolic are
available in the literature �see, e.g., Refs. �23–28��.

Another important and different contribution has been made by
Stadtke et al. �29�. In their work, they split the interfacial momen-
tum coupling terms in a viscous and nonviscous part. Drag forces
are representative for the former. For the latter, a series of terms
have been introduced in order to compensate for the information
lost during the averaging procedure. These terms contain only
space and time derivatives of major dependent parameters, includ-
ing phasic velocities, void fraction, and phasic densities, using
only one pressure. The authors enumerate the criteria for the de-
sign of the model and finally demonstrate that they achieve a full
set of real eigenvalues with a complete set of independent eigen-
vectors, warranting that the problem will be well posed �30�.

From a mathematical point of view, the target is to find a way to
remove the complex eigenvalues obtained with the two-fluid con-
servation equations. Following Hadamard �31�, a well posed prob-
lem is defined in these terms: “In order for a problem involving a
partial differential equation �PDE� to be well-posed, the solution
to the problem must exist and be unique, and the solution must
depend continuously upon the initial and boundary data.” An
equivalent definition, more suitable for numerical evaluation, may
be found through the strong hyperbolic character of a given equa-
tion system. The two-fluid model is a first order in a time system
of equations with first- and second-order spatial derivatives for the
convective and diffusive terms, respectively. In addition, there are
some zero-order terms for sources coming from interfacial terms.
Transforming these equations into a first-order system, a neces-

sary requirement for the well posedness of the problem, is that this
first-order system be strongly hyperbolic �see Refs. �32,33��,
which means that the system be diagonalizable with real eigenval-
ues. The equivalent first-order differential equations represent the
time evolution of the system and the nonguaranteed real eigenval-
ues suffice to prove the lack of causality of the solution and the
final blowup. This means that in the effort of getting a numerical
solution through a time marching scheme, fatal instabilities appear
and forbid not only the computation of the time evolution of the
variables but also the knowledge of the steady state of the system.
Even though real problems have a temporal evolution, the knowl-
edge of the steady solution is very useful for the industrial design
of processes with multiphase flow involved. This fact has moti-
vated the idea of recovering at least the steady solution in trying to
modify the time marching scheme by a time preconditioner.

Preconditioned systems, characterized as a projection of the
complex eigenvalues over the real axis, may be one of the pos-
sible choices. The main disadvantage of this alternative is that the
original equations should be modified so that they lose some con-
servation properties. The present paper introduces a precondition-
ing mass matrix method that makes the two-fluid model hyper-
bolic, recovering the conservation properties for the final solution,
and providing an alternative to obtain steady solutions, for multi-
phase flow problems, which will be of help for process design.

The next sections are organized as follows. Section 2 presents
the two-fluid model for a one-dimensional problem with equal
phase pressures. Section 3 develops a characteristic analysis of
this particular problem �see Ref. �34�� with emphasis on the lack
of real eigenvalues in order to motivate the proposal of a precon-
ditioning mass matrix. The paper then presents the mass matrix
used as a preconditioner, analyzing the role of the two parameters
included in its definition: the first one, �, is for making the model
hyperbolic, and the second one, �, is used for recovering the
propagation wave speed corresponding to the original model. Fi-
nally, representative problems are solved numerically with the
purpose of checking that the preconditioning method circumvents
the instabilities showed by most multifluid models when using a
large density ratio, high void fractions, and large relative veloci-
ties among the phases.

2 Two-Fluid Model
The complex nature of multiphase flows, characterized by

changes in the geometrical configuration of the different phases,
makes it extremely difficult to find models that reproduce the
physics of the system and that are at the same time numerically
tractable at a reasonable computational cost. Mathematical models
based on averaged fields of the phases �see, e.g., Refs. �1,18,35��
associated with experimental correlations seem to be one of the
best alternatives. These multifield models are widely used to
model and to simulate the transport of multiphase flow systems.
They treat each phase as an interpenetrating continuum �field�,
and conservation laws are applied to each one of them. In this
approximation, constitutive laws have to be provided to represent
the interaction between fields. In Fig. 1 we can see a schematic
representation of two-fluid models.

Two-phase flow averaged equations are presented below �see
Refs. �1,36��, which have been obtained as a result of temporal
and/or space averaging of the instantaneous local balance equa-
tions. Without loss of generality, the simplest model proposed by
Drew and Passman �18� is considered. In this one-dimensional
model the flow is assumed to be inviscid, isothermal, and without
phase change. Supposing for concreteness that one phase is gas-
eous and the other one liquid, we call �g and �l their correspond-
ing volume fractions. Thus, mass and momentum balance equa-
tions can be written in the following way

���g�g�
�t

+
���g�g�g�

�x
= 0 �1�
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���l�l�
�t

+
���l�l�l�

�x
= 0 �2�

�g�g
��g

�t
+ �g�g�g

��g

�x
= − �g

�p

�x
+ �g�gg − FI �3�

�l�l
��l

�t
+ �l�l�l

��l

�x
= − �l

�p

�x
+ �l�lg + FI �4�

where �, �, and p denote density, velocity, and pressure, respec-
tively. In this model, the pressure p is assumed the same for both
phases. Terms containing g represent the gravitational force, and
FI models the interaction between the phases. Several physical
effects may be included in interphase force FI �21�, but certainly
the most common of them is the drag force. For dispersed flows
this force can be modeled as �37�

FI =
3

8
Cd�l��g − �l���g − �l�

�g

rb
�5�

where rb is the mean radius of the dispersed phase and Cd is the
drag coefficient for which empirical correlations are available as a
function of the Reynolds number.

3 Characteristics Analysis
Examining the characteristic values of the governing equations,

it can be determined if a model is properly formulated. Taking
into account the constraint �g+�l=1, we can define �
= ��g , p ,�g ,�l� as the unknown state vector and Eqs. �1�–�4� can
be written in vector form as

A
��

�t
+ B

��

�x
+ C = 0 �6�

If incompressibility of each phase is assumed, matrices A, B, and
C are

A =�
1 0 0 0

− 1 0 0 0

0 0 �g�g 0

0 0 0 �1 − �g��l

� �7�

B =�
�g 0 �g 0

− �l 0 0 1 − �g

0 �g �g�g�g 0

0 1 − �g 0 �1 − �g��l�l

� �8�

and

C =�
0

0

− �g�gg + FI

− �1 − �g��lg − FI

� �9�

The local linear dynamic character of Eq. �6� can be examined
by linearizing the system about an initial state �0 �from now on,
we assume that all matrices and derivatives are evaluated in this
state�. The linear differential equation for the behavior of a per-
turbation ��=�−�0 is

A
���

�t
+ B

���

�x
+ � �A

��
·
��

�t
+

�B

��
·
��

�x
+

�C

��
	�� = 0 �10�

A solution in the form of a traveling wave is assumed

�� = ��0 exp�i�kx − 	t�� �11�

where ��0 represents the initial amplitude of the perturbation.
The imaginary part 	I of 	 will govern growth or decay depend-
ing on its sign and the real part 	R yields the speed of propaga-
tion. Substituting Eq. �11� into Eq. �10�, the compatibility condi-
tion that ��0 must satisfy is

− i	A��0 + ikB��0 + � �A

��
·
��

�t
+

�B

��
·
��

�x
+

�C

��
	��0 = 0

�12�

For an initial uniform steady state �� /�t and �� /�x are zero.
Defining 
=	 /k and D=�C /��, the condition under which non-
trivial solutions for ��0 exist is given by

det�A
 − B +
i

k
D	 = 0 �13�

In the limit as k→�, Eq. �13� reduces to the characteristic
equation corresponding to Eq. �6�

det�A
 − B� = 0 �14�

and the values that 
 can take are the characteristic values. Note
that algebraic terms like gravitational or drag forces, which do not
contain derivatives of the unknowns, do not affect the character-
istic analysis.

The characteristic values of the simplest two-fluid model, Eqs.
�6�–�9�, are given by


 = 
�,�,
1

d
�r ± s1/2�� �15�

where

r = �g�l�l + �1 − �g��g�g

s = − �g�1 − �g��g�l��g − �l�2

d = �1 − �g��g + �g�l �16�

We can observe that, except for the case when �g=�l, there are
two complex conjugated values for the characteristic 
. Thus,
since we are working in the limit k→�, the imaginary part of
omega 	I=k
I can take arbitrarily large values. Consequently, as
can be seen from Eq. �11�, the perturbation will grow without
limit even for a small increment in time. In other words, a little
disturbance of the initial state will diverge instantaneously. This is
in contradiction to the third Hadamard condition for a well-posed
problem because small perturbations are not reflected as small �or

Fig. 1 Schematic representation of two-fluid model
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at least finite� changes in the solution. Therefore, the solution does
not depend continuously on its data and the problem is said to be
ill-posed.

It is known that a well-posed problem can be guaranteed if all
the characteristic values are real and distinct �strong hyperbolic
system� �32,33�. As in the one-phase case, the degeneration of the
two infinite values of Eq. �15� can be removed if a finite sound
velocity for each phase is considered. However, the other two
complex values are not so easy to avoid. In the next section, we
will show a method to solve this difficulty.

4 Preconditioning Mass Matrix
We have seen in the previous section that the simplest two-fluid

model has complex characteristic roots and is therefore ill posed
as an initial value problem except for the trivial case of equal
phase velocities �18�. In this section, we propose a simple method
�already used in one-phase flows �38,39�� that permits us to hy-
perbolize the two-fluid model. This method consists of premulti-
plying the matrix A of Eq. �6� by another matrix M. From Eq. �6�
we can see that the preconditioning matrix M only affects terms
with temporal derivatives. Since these terms vanish when the
steady-state solution is achieved, this solution is not changed by
the preconditioning matrix.

The preconditioning mass matrix M has two parameters. The
first, �, only affects the inertia of the mass equation and allows the
hyperbolization of the model �no complex characteristic values�.
The second, �, affects each one of the temporal terms of the
balance equations, its purpose being to correct the speed of propa-
gation of the waves. Thus, the form of the proposed matrix M is

M = ��
� 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� �17�

and defining Ã= �MA�, the new characteristic equation is given
by

det�Ã
 − B� = 0 �18�

Developing the determinant, we arrive to the general expression

I0
2 + I1
 + I2 = 0 �19�

where

I0 = − ��l�g + ��g�l� �20�

I1 = �2�l�l�g + �� + 1��g�g�l�/� �21�

I2 = − ��l�l
2�g + �g�g

2�l�/�2 �22�

The roots of the characteristic equation, Eq. �19�, are


1,2 = −
I1

2I0
±�� I1

2I0
	2

−
I2

I0
�23�

and defining C1= I1 / �2I0� and C2= I2 / I0 with

C1 = −
2�l�l�g + �� + 1��g�g�l

2���l�g + ��g�l�
�24�

C2 =
�l�l

2�g + �g�g
2�l

�2��l�g + ��g�l�
�25�

we arrive at the following expression for the roots


1,2 = − C1 ± �C1
2 − C2 �26�

Since we want to assure hyperbolicity, the roots should not have
imaginary components and therefore we ask for

� = C1
2 − C2  0 �27�

If the discriminant is equalized to zero, �crit values are found.
Calling A=�l /�g, B=�l /�g, and C=�l /�g we obtain

� = C1
2 − C2 = A�crit

2 − 2�2BC�C − 1� + A��crit + A + 4B�C − 1� = 0

�28�

After computing the �crit from the previous equation and substi-
tuting it into Eq. �26� we reach the following expression for the
characteristic roots with �=�crit


1,2 =
�D ± �E · D��g

��l�g���l − �g�2 + �l
2� + �g�g

2�l ± 2�E · D��

D = �l�l
2�g + �g�g

2�l

E = �l�g��l − 2�g�2 �29�
In Fig. 2 we have represented the eigenvalues of the problem

without preconditioning which arise as a result of a sweeping in
the void fraction and velocity relations. As it can be seen, they
possess imaginary components except for velocity relations C
=�l /�g=1. Figure 3 corresponds to the problem with precondi-
tioning for �=1. In this case, although the characteristics do not
take complex value, the propagation velocity has been modified
for the parameter �. Note that not only has the maximum value of
the real component been modified, but there are also negative
propagation velocities.

The parameter � that permits hyperbolizing the differential
two-fluid model modifies the real part of characteristic values.
Therefore, the temporal evolution of the problem is different from
the original one. With the purpose of recovering the temporal
behavior, the preconditioning matrix contains a parameter �
whose determination is next developed.

From Eq. �26� for the characteristic values, we can observe that
the original system, �=1 and �=1, presents imaginary character-
istics. The real part, which determines the propagation velocity of
the information in the medium, is given by

Re�
1,2� = − C1�� = 1;� = 1� �30�

Parameter � is obtained from the relation between the character-
istic for �=�crit and the real part Re�
1,2�. Therefore

Fig. 2 Eigenvalues for a sweeping in alpha „0.01:0.01:0.99…
and velocity relations „1:5:100…, without preconditioning
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�1,2 = −
�l�g + �g�l

�l�l�g + �g�g�l

�D ± �E · D��g

�l�g���l − �g�2 + �l
2� + �g�g

2�l ± 2�E · D

�31�
In Fig. 4 we can observe the characteristic values with the

parameter � determined by the last expression. These values do
not present complex components and they recover the value of the
real component corresponding to the original problem without
preconditioning.

5 Numerical Results
In this section we verify numerically the validity of the precon-

ditioning method using a time marching scheme to solve as a first
example a well-known problem, the so called water faucet, which
has an analytical solution. The ill posedness of the two-fluid
model without preconditioning causes in numerical implementa-
tions a tendency to develop instabilities that grow up and propa-
gate through the domain. These instabilities are more likely to

occur at high void fractions and at large density and velocity
ratios. Thus, we propose another example with unfavorable initial
conditions �with a tendency to instabilities� that we call the wave-
traveling problem. Without preconditioning, even the robust nu-
merical scheme described in the next subsection fails to solve this
second example.

5.1 Discretization. The implemented numerical discretization
is based on a semi-implicit scheme with donor or upwind cell
differencing for the convective terms. A staggered spatial nodal-
ization is used and thus scalar variables �, �, and p are determined
at the center of the control volumes �j index�, while velocity vari-
ables �g and �l are located at the edges �j+1/2 index�. The dis-
cretized form of Eqs. �1�–�4� are then

1

�t
���g�g� j

n+1 − ��g�g� j
n� +

1

�x
���̂g�̂g� j+1/2

n ��g� j+1/2
n+1

− ��̂g�̂g� j−1/2
n ��g� j−1/2

n+1 � = 0 �32�

1

�t
���l�l� j

n+1 − ��l�l� j
n� +

1

�x
���̂l�̂l� j+1/2

n ��l� j+1/2
n+1

− ��̂l�̂l� j−1/2
n ��l� j−1/2

n+1 � = 0 �33�

1

�t
��̂g�̂g� j+1/2

n ��g
n+1 − �g

n� j+1/2

+
1

�x
��̂g�̂g�g� j+1/2

n ���g� j+1/2
n − ��g� j−1/2

n �

= −
1

�x
��g� j+1/2

n �Pj+1 − Pj�n+1 + ��g�g� j+1/2
n g − �FI� j+1/2

n+1

�34�
and

1

�t
��̂l�̂l� j+1/2

n ��l
n+1 − �l

n� j+1/2 +
1

�x
��̂l�̂l�l� j+1/2

n ���l� j+1/2
n − ��l� j−1/2

n �

= −
1

�x
��l� j+1/2

n �Pj+1 − Pj�n+1 + ��l�l� j+1/2
n g − �FI� j+1/2

n+1 �35�

Scalar variables � and � at j+1/2 are the average value between
j and j+1 and, calling � to � or �, hat variables are defined as

�̂ j+1/2 =
1

2
�� j + � j+1� +

1

2

� j+1/2

�� j+1/2�
�� j − � j+1� �36�

where � is the velocity corresponding to the phase considered.
This numerical model is the one used in the RELAP5 code for

multiphase flows. More details, like the implementation of an au-
tomatic control of the time step based on the Courant number, can
be found in Refs. �28,40�. The inclusion of the preconditioning
matrix M within this scheme does not present difficulties. It is just
to multiply the corresponding terms in the balance equations by
the parameters � and � according to Eq. �17�. In order to ensure
strong hyperbolicity �real and distinct characteristic values�, large
but finite sound velocities as well as � parameters slightly greater
than �crit were used.

5.2 Water Faucet Problem. Due to the fact that it has an
analytical solution, the water faucet problem devised by Ransom
�41� is widely used to validate two-phase flow models �42–44�.
The problem consists of a 12-m-long vertical tube where there is
initially a uniform volume fraction ��l

0=0.6� of water ��l

=1000 kg/m3� that is moving at constant velocity ��l
0=15 m/s� in

a stagnant air annulus. No interaction between phases is consid-
ered. When the simulation starts �t=0�, a gravity field �g
=9.8 m/s2� is applied and this causes the water column to accel-
erate. At the top of the tube �inlet�, water volume fraction and
velocity are kept unchanged ��l

inlet=�l
0 and �l

inlet=�l
0�, and at the

Fig. 3 Eigenvalues for a sweeping in alpha „0.01:0.01:0.99…
and velocity relations „1:5:100…, with preconditioning and �=1.
All eigenvalues are real, but are different from the real part of
eigenvalues of Fig. 2.

Fig. 4 Eigenvalue for a sweeping in alpha „0.01:0.01:0.99… and
velocity relations „1:5:100… with preconditioning and �Å1. All
eigenvalues are real and are equal to the real part of eigenval-
ues of Fig. 2.
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bottom �outlet� a constant pressure is maintained �poutlet=105 Pa�.
Due to the acceleration, a contact discontinuity propagates down-
ward until a steady state is reached when the discontinuity arrives
at the outlet.

Neglecting pressure gradient in both fluids, the analytical solu-
tion to the water faucet problem is given by

If x � �l
0t +

1

2
gt2�g = 1 −

�l
0�l

0

�l

�l = ���l
0�2 + 2gx�1/2;

�
and otherwise �g = 1 − �l

0

Using the preconditioning mass matrix, this problem was simu-
lated with six different meshes of 40, 80, 160, 320, 640, and 1280
uniform lineal elements. In Figs. 5 and 6 numerical as well as
analytical solutions for the void fraction and water velocity are
shown. These figures correspond to a time �t�2 s� in which the
steady state was reached. It can be seen that, as mentioned above,

the preconditioning method does not affect the steady state.
Figures 7 and 8 show the void fraction and liquid velocity,

respectively, at time �t=0.4 s�. At this time, the discontinuity is
still within the tube. Although agreement between numerical and
analytical solutions in a transient state is not expected �we are
using �=1�, these figures show that the velocity of propagation of
the discontinuity is well reproduced. Besides, numerical solutions
for water velocity and void fraction tend to analytical values when
the number of elements is increased, capturing the contact discon-
tinuity very well.

5.3 Wave Traveling Problem. In this problem, unfavorable
conditions are set up in order to reflect in the numerical simulation
the ill-posed character of the differential equations. The domain is
one dimensional and its length L=0.4 m is discretized in 100
elements. The density ratio �l /�g is 1000:1 and all the fields are
initially uniform ��l=1 m/s, �g=10 m/s, p=0� except for the
void fraction that is a sinusoidal perturbation ��g=0.5
+0.45 sin�4�x /L��. Periodic boundary conditions are imposed.
Thus, waves generated by the void fraction perturbation can

Fig. 5 The water faucet problem. Void fraction with precondi-
tioning at steady state, for a mesh of 320 uniform lineal ele-
ments. Comparison between numerical and analytical
solutions.

Fig. 6 The water faucet problem. Liquid velocity with precon-
ditioning at steady state, for a mesh of 320 uniform lineal ele-
ments. Comparison between numerical and analytical
solutions.

Fig. 7 The water faucet problem. Void fraction with precondi-
tioning at t=0.4 s, for six different meshes of 40, 80, 160, 320,
640, and 1280 uniform lineal elements.

Fig. 8 The water faucet problem. Liquid velocity with precon-
ditioning at t=0.4 s, for six different meshes of 40, 80, 160, 320,
640, and 1280 uniform lineal elements.
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Fig. 9 The wave traveling problem. Void fraction without pre-
conditioning at four time steps of 0.001 s.

Fig. 10 The wave traveling problem. Gas velocity without pre-
conditioning at four time steps of 0.001 s.

Fig. 11 The wave traveling problem. Void fraction with precon-
ditioning at five time steps of 0.001 s.

Fig. 12 The wave traveling problem. Gas velocity with precon-
ditioning at five time steps of 0.001 s.

Fig. 13 The wave traveling problem. Void fraction with precon-
ditioning at 25 time steps of 0.001 s.

Fig. 14 The wave traveling problem. Gas velocity with precon-
ditioning at 25 time steps of 0.001 s.
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propagate freely through the domain. As in the water faucet prob-
lem, no interaction between phases is considered in this case.
Although the initial conditions can seem rather extreme, these
conditions �or even worse ones� appear for example in the steel-
making industry when argon is injected at the bottom of the ladle
to produce stirring in the liquid steel.

Figure 9 shows the void fraction obtained without precondition-
ing just before the numerical implementation becomes unstable at
five time steps of 0.001 s. This instability is more evident in Fig.
10, where the gas velocity is plotted. Figures 11 and 12 were
obtained with preconditioning and they correspond to five time
steps of 0.001 s. As can be observed, using the preconditioning
method the solution does not diverge and is smooth. This is not
surprising since now we are working with a well-posed system of
differential equations. The simulation can be continued and no
sign of instability is found as can be seen in Figs. 13 and 14 where
we show the same curves after 25 time steps of 0.001. It is also
worth noting that the same problem has been solved with the
commercial code CFX �45�, and the solution diverges after seven
time steps of 0.001 s.

6 Conclusions
We have developed a preconditioning method for the mass ma-

trix of the two-fluid model in order to make the model well posed.
The preconditioning matrix has two parameters: the first one � is
for making the model hyperbolic, and the second one � is for
recovering the wave velocity propagation corresponding to the
original model. Both parameters depend on the void fraction and
on velocity and density relations between phases.

The characteristic values obtained with the preconditioning
method do not show any imaginary component and share the same
real part with the original model. To test the proposed method we
have modified a well-established numerical scheme to include the
preconditioning. Two examples were analyzed using �=1. One of
them, the so-called water faucet problem, is a well known bench-
mark widely used for two-phase flows. Using the preconditioning
method, the numerically obtained steady-state solution agrees
with the analytical solution. Besides, although the time evolution
cannot be guaranteed using �=1, the method reproduces transient
solutions very well. The second example was chosen in order to
evidence numerically the ill-posed nature of the two-fluid model.
This example, a large amplitude traveling wave, allowed us to see
how the ill posedness is reflected as instabilities in the numerical
simulation and shows that, as expected, these instabilities do not
appear when the differential equations are made well posed by
means of the preconditioning matrix.
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Analytical Derivation of Cosserat
Moduli via Homogenization of
Heterogeneous Elastic Materials
Why do experiments detect Cosserat-elastic effects for porous, but not for stiff-particle-
reinforced, materials? Does homogenization of a heterogeneous Cauchy-elastic material
lead to micropolar (Cosserat) effects, and if so, is this true for every type of heterogene-
ity? Can homogenization determine micropolar elastic constants? If so, is the homoge-
neous (effective) Cosserat material determined in this way a more accurate representa-
tion of composite material response than the usual effective Cauchy material? Direct
answers to these questions are provided in this paper for both two- (2D) and three-
dimensional (3D) deformations, wherein we derive closed-form formulae for Cosserat
moduli via homogenization of a dilute suspension of elastic spherical inclusions in 3D
(and circular cylindrical inclusions in 2D) embedded in an isotropic elastic matrix. It is
shown that the characteristic length for a homogeneous Cosserat material that best
mimics the heterogeneous Cauchy material can be derived (resulting in surprisingly
simple formulae) when the inclusions are less stiff than the matrix, but when these are
equal to or stiffer than the matrix, Cosserat effects are shown to be excluded. These
analytical results explain published experimental findings, correct, resolve and extend
prior contradictory theoretical (mainly numerical and limited to two-dimensional defor-
mations) investigations, and provide both a general methodology and specific results for
determination of simple higher-order homogeneous effective materials that more accu-
rately represent heterogeneous material response under general loading conditions. In
particular, it is shown that no standard (Cauchy) homogenized material can accurately
represent the response of a heterogeneous material subjected to a uniform plus linearly
varying applied traction, while a homogenized Cosserat material can do so (when inclu-
sions are less stiff than the matrix). �DOI: 10.1115/1.2711225�

Keywords: homogenization, Cosserat-elasticity, dilute suspension of elastic spheres,
nonlocal constitutive equations, micropolar effects

1 Introduction
There is a long-standing debate in the solid mechanics commu-

nity concerning the possibility of predicting micropolar elastic
�Cosserat� behavior from Cauchy-elastic materials containing in-
homogeneities or microstructures. In fact, although the motivation
leading to Cosserat effects seems to be very intuitive, theoretical
results in the literature are often contradictory and no definitive
conclusion is available �see Appendix A for details�. Moreover,
experimental results support Cosserat effects for porous materials
�like bone or foam �1–5��, but find an absence of these effects for
reinforced materials �6,7�.

In the present paper we provide a general methodology for the
determination of the moduli for a homogeneous Cosserat-elastic
material that best approximates a heterogeneous Cauchy-elastic
material. We apply this methodology to the specific cases of three-
dimensional �3D� deformations of a dilute suspension of �Cauchy,
linear, and isotropic� elastic spherical inclusions, and two-
dimensional �2D� deformations of circular cylindrical inclusions,
in a �Cauchy, linear, and isotropic� elastic matrix. With reference
to a Cosserat �linear and isotropic� material, it is shown that:

1. Cosserat effects are predicted for spherical or cylindrical in-
clusions less stiff than the matrix, but are excluded for in-
clusions having stiffness equal to or greater than that of the
matrix;

2. simple, closed-form formulae give the Cosserat characteris-
tic length �and the other effective Cosserat moduli� as a
function of the inclusion radius, volume fraction, and the
elastic contrast of the constituent phases; and

3. the characteristic length that results for three-dimensional
deformations of a matrix with spherical inclusions is signifi-
cantly smaller than that resulting for two-dimensional defor-
mations of a matrix with circular cylindrical inclusions.

Conclusion �1� rigorously explains experimental evidence demon-
strating micropolar effects for porous material, but displaying an
opposite trend, or in the words of Gauthier �7� “an anti-micropolar
phenomenon,” for inclusions stiffer than the matrix.

A closely related issue is that standard homogenization results
for linear elastic materials provide overall or effective elastic
moduli that relate �uniform� average stress to �uniform� average
strain. This means that standard homogenization results give a
homogeneous “effective” material that is able to represent well the
overall response of the actual heterogeneous elastic material when
the applied loading is uniform. However, when the applied load-
ing deviates from uniformity, the homogeneous “effective” mate-
rial less accurately represents the overall response of the actual
heterogeneous material. This fact is important, since of course in
general composite materials are employed in applications where
the applied loading is not uniform.

We show in this paper, for situations in which the applied load-
ing on a heterogeneous material varies sufficiently slowly that it
admits a Taylor series expansion, that whereas the standard ho-
mogenization results provide a homogeneous “effective” material
that can accurately represent the actual heterogeneous one only

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received February 10, 2006; final manu-
script received April 20, 2006. Review conducted by Robert M. McMeeking.

Journal of Applied Mechanics JULY 2007, Vol. 74 / 741Copyright © 2007 by ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



when the leading-order �uniform� term in the Taylor series is re-
tained, a homogeneous “effective” Cosserat material can do so
when two terms in the Taylor series are retained, when the mate-
rial heterogeneities are less stiff than the matrix material. The
result is a simple homogeneous material model that more accu-
rately represents actual �compliant-inclusion-type� heterogeneous
material response under slowly varying applied loading.

2 Review of Homogenization Results for Uniform
Applied Loading

Here we briefly summarize well-known results for the effective
moduli of a homogeneous, isotropic linear elastic matrix contain-
ing a dilute suspension of homogeneous, isotropic linear elastic
inclusions having in general different moduli than the matrix; the
inclusions are either cylinders �for plane strain deformations� or
spheres �for three-dimensional deformations�. As noted in Sec. 1,
one approach for deriving such moduli is to require that they
relate average �uniform� stress and strain in the same way that
these quantities are related in the actual heterogeneous material.
An alternative, equivalent approach for their derivation is to re-
quire that the total elastic energy in the uniform “effective” me-
dium equals that in the actual heterogeneous medium under uni-
form applied loading. We will employ this energy approach in the
present work.

When the composite is dilute, as considered here, we may em-
ploy the solution for an infinite body containing a single inclusion
and subjected to uniform far-field loading. From this solution, we
select a finite region containing the inclusion, and calculate the
mean stresses acting on it. The effective moduli may then be
calculated by equating, through first order in volume fraction, the
elastic energy contained in the selected finite region calculated
from the actual heterogeneous material solution with that calcu-
lated from a homogeneous effective body of the same size sub-
jected to the mean stresses calculated from the infinite-body solu-
tion. We define the effective shear modulus as �̄ and bulk
modulus as �̄ �for 3D, whereas �̄=3–4�̄, with �̄ denoting in-plane
Poisson’s ratio for plane strain 2D�. A sketch of this procedure is
shown in Fig. 1, for plane strain deformation of an infinite plane
with a circular hole.

Eshelby �8� and independently Hashin �9� have obtained the
following effective elastic moduli for the three-dimensional prob-
lem of a matrix containing spherical inclusions �here retaining
terms through first order in the volume fraction ƒ of the inclusion
phase�

�̄ = �m + f
5�m��i − �m��3�m + 4�m�

2��i + �m��3�m + 4�m� + �m�3�m + 4�i�

�̄ = �m + f��i − �m�
3�m + 4�m

3�i + 4�m
�1�

where subscripts m and i denote matrix and inclusion,
respectively.

In two-dimensional �plane strain� elasticity, the spheres are re-
placed by parallel infinite circular cylinders and the effective-
modulus formulae through O�f� are �10�

�̄ = �m + f�1 + �m��m

�i − �m

�m�i + �m

�̄ = �m + f�1 + �m����m − 1�
�i − �m

�m�i + �m

−
��m − 1��i − ��i − 1��m

2�i + ��i − 1��m
� �2�

where now �=3–4�, with � denoting �in-plane� Poisson’s ratio.

3 Homogenization Under Nonuniform Applied
Loading

3.1 Taylor Series Representation of Slowly Varying Ap-
plied Loading. Let us consider an infinite body of composite
material with a dilute distribution of inclusions, subjected to arbi-
trary but slowly varying far-field �“boundary”� conditions. The
far-field displacement field u�x� can then be expanded in a Taylor
series about the location of the center of an inclusion �chosen as
the origin of coordinates�. Through second order, the most general
representation for this is

Fig. 1 Procedure of homogenization of a material containing a dilute distribution of circular voids. Heterogeneous material
„left… is an hÃh prism removed from an infinite sheet that is subjected to uniform, uniaxial far-field stress; homogeneous
material „right… is subjected to the mean stresses calculated from the heterogeneous prism. For the plane strain problem, level
sets of �11 are shown; note that the values of �12, �21, and �22, shown parallel to the edges, are less than 1/10 the maximum
value of �11 at a distance from inclusion center equal to three times the radius of the inclusion.
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ui = �ijxj + �ijkxjxk �3�

where �ij and �ijk are constant coefficients, the latter having the
obvious symmetry �ijk=�ikj �since xj and xk play the same role�,
indices range between 1 and 3 �1 and 2 for plane strain�, and the
usual summation convention for repeated indices is employed
here and throughout the paper except where noted. Although co-
efficients �ij are unrestricted, the quadratic part of the displace-
ment field must satisfy the Navier equations of equilibrium with-
out body forces, resulting in the following three �two for plane
strain� restrictions

�kki = − �1 − 2�m��ikk �4�
As is well known, the homogeneous effective Cauchy-elastic

material, Eqs. �1� and �2�, accurately mimics the response of a
heterogeneous Cauchy material when this is subjected to a lin-
early varying displacement �uniform applied loading�. However,
in most practical situations, a composite material is subjected to a
spatially varying applied loading. How well does the homoge-
neous effective Cauchy material mimic the actual heterogeneous
one in this case, and can a homogeneous Cosserat material do
better? Let us consider plane strain and three-dimensional defor-
mations separately.

3.2 Plane Strain. Employing the constraint Eq. �4� and ex-
plicitly exhibiting the plane-strain bending contributions, the qua-
dratic terms in the remote displacement field Eq. �3� become

u1 = ��̃13 −
�m

2�1 − �m�R23
�x1

2 +
x1x2

R13
− �2

1 − �m

1 − 2�m
�̃13 +

1

2R23
�x2

2

u2 = ��̃23 −
�m

2�1 − �m�R13
�x2

2 +
x1x2

R23
− �2

1 − �m

1 − 2�m
�̃23 +

1

2R13
�x1

2,

u3 = 0 �5�

where coefficients �̃13, �̃23 �index 3 denotes the out-of-plane di-
rection and the others the nonnull displacement component direc-
tions� and bending curvatures R13 and R23 �index 3 again denotes
the out-of-plane direction, while the other indices denote the di-
rections of the normal components of bending stress� are arbitrary.
Displacements Eqs. �5� a priori satisfy the Navier equations and
thus represent the most general equilibrium plane-strain quadratic
displacement field.

The problem of an infinite sheet containing a circular hole and
subjected to far-field bending was solved by Muskhelishvili �11�,
and by Sendeckyj �12� in the general case of a circular elastic
inclusion. The elastic fields produced by the far-field loading

modes associated with �̃13 and �̃23 in an infinite sheet containing
a circular elastic inclusion are determined in Appendix B �where
the bending solution is also included for completeness�. The im-
portant point with respect to our upcoming accurate modeling of
effective material response is that these solutions show that the
displacement field Eq. �5�, valid exactly for a homogeneous ma-
terial, is perturbed by the inclusion, in the material outside the
inclusion, only by terms of O�f2�.

3.3 Three-Dimensional Deformations. The most general
quadratic equilibrium remote displacement field can be written as,
using Eq. �3� with Eq. �4� �summation not implied for repeated
indices�

ui =
xixj

Rik
+

xixk

Rij
−

1

2Rjk
�xj

2 +
�m

1 − �m
xi

2� −
1

2Rkj
�xk

2 +
�m

1 − �m
xi

2�
+ �� j − �k�xjxk + ��̃ik + �̃ij�xi

2 − 2
1 − �m

1 − 2�m
��̃ikxj

2 + �̃ijxk
2� �6�

where indices i, j, k are cyclic permutations of 1, 2, 3 �i.e., 1,2,3;
2,3,1; 3,1,2�, illustrating the fact that the kinematics are the sum of
six plane strain modes �defined by bending curvatures Rij and

additional free coefficients �̃ij �where i denotes the direction of
the bending stress or non-null displacement component and j the
out-of-plane direction�� and three torsional angles of twist/length
�i �i=1,2 ,3�. Therefore, the plane-strain displacement field Eq.
�5� can be obtained from Eq. �6� by taking 1/R12=1/R21=1/R32

=1/R31= �̃12= �̃21= �̃32= �̃31=�1=�2=�3=0.
The problem of an infinite elastic matrix containing a spherical

void and subjected to remote bending loading �a particular case of

Eq. �6� in which all �̃ij and �i are zero� has been solved by Sen
�13�, and by Das �14� for the general case of a spherical elastic
inclusion. These solutions show that the bending displacement
field, valid exactly for a homogeneous material, is perturbed by
the inclusion in the region outside the inclusion by terms of
O�f5/3�. The fact that the perturbation remains at O�f5/3� for the
general quadratic displacement field Eq. �6� is shown in Appendix
C, where the solution for a spherical elastic inclusion in an infinite
elastic matrix, subject to the remote displacement field Eq. �6� is
obtained. Appendix C also shows that the Das �14� solution is
incomplete, and that it can be expressed purely in terms of simple
functions.

3.4 Conclusion. The quadratic part of the displacement field
Eq. �3�, together with equilibrium requirements Eq. �4�, which is
valid exactly for a homogeneous material, is perturbed by a cylin-
drical or spherical inclusion in the region outside the inclusion by
terms of O�f2� for two-dimensional elasticity and O�f5/3� for
three-dimensional elasticity.

In other words, in an asymptotic expansion in inclusion volume
fraction f of the displacement field solution outside the inclusion,
through order f the inclusion is neutral under remote quadratic
displacement conditions. Therefore, the effective moduli deter-
mined under the remote quadratic displacement conditions
are identical �to first order in f� with the moduli of the matrix
material.

4 Standard Homogenized Material is in Error for
Quadratic Applied Displacements

Now we are in a position to face the main problem, namely:
under an applied linear remote displacement field �uniform ap-
plied remote stress� the perturbation induced by the inclusion in
the displacement field solution in the surrounding matrix material
is O�f�, while under an applied quadratic remote displacement
field �applied linear remote stress field� the perturbation in the
displacement field solution in the matrix becomes O�f5/3� for 3D
and O�f2� for 2D elasticity.

Therefore, the effective material defined by Eqs. (1) and (2) is
stiffer (more compliant) for linearly varying applied loading than
the actual heterogeneous material for inclusions stiffer (more
compliant) than the matrix. That is, if the heterogeneous material
�matrix with inclusion� is represented in the usual way in compos-
ite materials theory—by a homogeneous material with effective
moduli given by Eqs. �1� or �2�—this representation works well
for uniform applied loading, but for linearly varying applied
stress, it is in error by terms of O�f�.

To better elucidate this point, let us consider a cube of edge h,
composed of a homogeneous effective material having properties
Eqs. �1� or �2� and subject to the quadratic displacement field Eqs.
�5� or �6�. The total elastic energy in such a cube is obtained by
calculating the strain energy density from Eqs. �5� or �6� and then
integrating this over the cube.

The total elastic energy in the cube, E, is, for plane strain
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ECauchy =
h5�̄

12�1 − �̄�
� 1

R13
2 +

1

R23
2 � +

h5�̄�1 − �̄��3 − 4�̄�
3�1 − 2�̄�2 ��̃13

2 + �̃23
2 �

= h5�m� 1

R13
2 +

1

R23
2 �� 1

12�1 − �m�
− �Rf� + h5�m��̃13

2 + �̃23
2 �� �1 − �m��3 − 4�m�

3�1 − 2�m�2 − ��f� + O�f2� �7�

where

�R =
1

12�1 − �m��3�m + �i�1 − 4�m�
�m + �i�3 − 4�m�

−
2�i�1 − �m�

�i + �m�1 − 2�i�
�

�� = −
�1 − �m��3 − 4�m�

3�1 − 2�m�2 � 2�i�1 − �m��5 − 6�m�
�1 − 2�m��3 − 4�m���i + �m�1 − 2�i��

+
�i	− 13 + 2�m�9 + 4�3 − 4�m��m�
 + �m	− 7 + 2�m�13 − 8�m�3 − 2�m��


�1 − 2�m��3 − 4�m���m + �i�3 − 4�m�� � �8�

while for three-dimensional deformation it is

ECauchy =
h5�̄

12�1 − �̄� �
i,j=1

i�j

3 � 1

Rij
2 +

�̄

RijRji
� +

h5�̄

12 ��i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j +
2h5�̄�1 − �̄�

3�1 − 2�̄� ��̃12�̃13 + �̃21�̃23 + �̃31�̃32 +
3 − 4�̄

2�1 − 2�̄� �
i,j=1

i�j

3

�̃ij
2�

= h5�m �
i,j=1

i�j

3
1

Rij
2 � 1

12�1 − �m�
− �Rf� + h5�m �

i,j=1

i�j

3
1

RijRji
� �m

12�1 − �m�
− �RRf� + h5�m��i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j� 1

12
− ��f�

+ h5�m �
i,j=1

i�j

3

�̃ij
2� �1 − �m��3 − 4�m�

3�1 − 2�m�2 − ��f� + h5�m��̃12�̃13 + �̃21�̃23 + �̃31�̃32�� 2�1 − �m�
3�1 − 2�m�

− ���f� + O�f5/3� �9�

where

�R =
1

2�1 − �m�
−

28�i
2 + 34�i�m + 13�m

2

4�2�i + �m���m�7 − 5�m� + 2�i�4 − 5�m��
−

�m�2�i − �m��1 − 2�i� + 2�i
2�1 + �i�

4�2�i + �m���i�1 + �i� + 2�m�1 − 2�i��

�RR =
1

2�1 − �m�
−

26�i
2 + 38�i�m + 11�m

2

4�2�i + �m���m�7 − 5�m� + 2�i�4 − 5�m��
−

��i + �m��i�1 + �i� + �m
2 �1 − 2�i�

4�2�i + �m���i�1 + �i� + 2�m�1 − 2�i��

�� =
5��m − �i��1 − �m�

4�m�7 − 5�m� + 8�i�4 − 5�m�

��� = −
2�1 − �m�

�2�m�1 − 2�i� + �i�1 + �i���1 − 2�m�2��m�7 − 5�m� + �i�8 − 10�m��
	2�i

2�1 + �i��1 − 2�m��3 − 5�m� + �i�m�1 − 5�m��3 − 4�m

− �i�9 − 14�m�� − �m
2 �1 − 2�i��9 − �m�26 − 25�m��


�� =
�1 − �m�

��m�7 − 5�m� + 2�i�4 − 5�m���1 − 2�m�3�2�m�1 − 2�i� + �i�1 + �i��
	2�i

2�1 + �i��− 10 + 53�m − 91�m
2 + 50�m

3 � + �m
2 �1 − 2�i��25

− 104�m + 181�m
2 − 110�m

3 � − �i�m�5 − 73�m + 164�m
2 − 100�m

3 + �i�5 + 149�m − 454�m
2 + 320�m

3 ��
 �10�

For two-dimensional deformations the terms �R and ��, while for
three-dimensional deformations the terms ��R− ��RR��, �2��

− ������, and ��, are all negative for inclusions stiffer than the
matrix �i.e., when the energy of a composite specimen is higher
than that of the same specimen comprised of purely matrix mate-
rial�, all zero when they have the same stiffness, and all positive
for inclusions less stiff than the matrix. This will be in a sense
used as our definition of “inclusion stiffer than the matrix.”

If the elastic energy Eq. �9� �or Eq. �7�� is compared to that
evaluated for an identical prism now comprised of matrix material
and containing a spherical �cylindrical in 2D� inclusion, ideally
removed from an infinite body that is subjected to the far-field
quadratic displacements Eq. �6� �or Eq. �5��, there is a mismatch

of the linear terms in f , so that homogenization yields a material
stiffer �more compliant� than the heterogeneous solution, for an
inclusion stiffer �more compliant� than the matrix.

5 Comparison With Cosserat Material
The key point in the above discussion is that the results for the

heterogeneous material are compared to a homogeneous linear
elastic material, providing the effective properties. While a homo-
geneous material with appropriately chosen effective moduli can
successfully mimic the composite material when uniform stress
fields are applied, we showed that it cannot do so when the sim-
plest nonuniform �i.e., uniform plus linearly varying� stress field is
applied. What happens now if this comparison is made between a
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composite material and a homogeneous Cosserat or micropolar
material? Note that this question has fundamental—as opposed to
empirical—motivation: the assumption leading to standard
Cauchy elasticity—that surface resultant moments/area vanish as
the Cauchy tetrahedron becomes vanishing small—is a sensible
approximation for materials with extremely small-scale micro-
structure, but is not in general otherwise justifiable. Absent this
assumption, a Cosserat-type constitutive framework arises.

5.1 Simplest Cosserat Constitutive Model. We begin for
simplicity with constrained-rotation micropolar materials �the
simplest Cosserat constitutive model�, for which the constitutive
equations are �15�

�ij = 2��	ij +
�

1 − 2�
	kk
ij�, mij = 4��2�� ji + ��ij� �11�

where �ij is the symmetric part of the force-stress tensor; 	ij is the
infinitesimal strain tensor; mij is the deviator of the couple-stress
tensor; and �ij is the torsion-flexure tensor. The kinematical quan-
tities are defined in terms of the displacement field ui as

	ij = 1
2 �ui,j + uj,i�, �ij = i,j = 1

2eihkuk,hj �12�

where eihk is the Ricci �permutation� tensor; i is the macrorota-
tion axial vector; and a subscript comma denotes partial differen-
tiation with respect to subsequent indices. The material parameters
� and � appearing in Eq. �11� are the usual �Poisson and shear�
elastic moduli �subject to the usual restrictions�, whereas material
parameters � and � define the Cosserat behavior; in particular, the
former is a characteristic length of the material and the latter is
dimensionless and subject to the restriction −1���1 for positive
definiteness of the strain energy.

Let us consider now two ideal material elements: a cube of
edges h of Cauchy-elastic material containing an inclusion, ideally
removed from an infinite body that is subjected to far-field load-
ing, and the same cube instead composed of a homogeneous,
constrained-rotation Cosserat material, Eqs. �11�. We wish to de-
termine the values of the effective Cosserat moduli �̄, �̄, �, and �
so that the homogeneous Cosserat material best mimics the het-

erogeneous Cauchy material under general slowly varying applied
loading �Fig. 2, illustrating for simplicity a bending stress
distribution�.

5.2 Matching With the Uniform Stress Field. For uniform
applied stress �and zero applied couple stress� the effective modu-
lus values Eqs. �1� and �2�, identical to those obtained for Cauchy-
elastic material, are found for the Cosserat material. The reason
for this is simply that for a uniform applied stress on the Cosserat
material, a homogeneous deformation with null deformation-
curvature tensor is produced, so that the Cosserat effects disappear
�i.e., the moduli � and � do not enter the solution�.

5.3 Matching With Linearly Varying Remote Stress Field.
For a linearly varying remote applied stress on the Cosserat ma-
terial, Cosserat effects are present and, as will be shown, for in-
clusions less stiff than the matrix, they permit minimization, and
for certain deformations elimination, of the mismatch in the strain
energy between the actual composite material and the homoge-
neous effective Cosserat material.

Boundary conditions for a Cosserat solid and a Cauchy-elastic
solid are not equivalent. For instance, in a purely kinematic ap-
proach, for a Cosserat material we can prescribe displacements
Eqs. �6� �or Eqs. �5�� along a side of the prism, but the two
tangential components of the rotation must also be specified, the
latter not being necessary in a Cauchy solid. Following the kine-
matic approach, we assume displacements Eqs. �6� �or Eqs. �5��,
and the rotations deduced from these displacements, to be pre-
scribed along all sides of the prism for the Cosserat material. �For
the Cauchy material, only the displacements Eqs. �6� �or Eqs. �5��
are prescribed on the boundary, but the resulting solution has ro-
tations there identical to those prescribed for the Cosserat mate-
rial, so the Cosserat and Cauchy material solutions correspond to
exactly the same problem.� The solution to this boundary value
problem for pure bending of the Cosserat material was given by
Koiter ��15�, his Secs. 6.2 and 6.3�.

Generalizing the Koiter solution, for the displacement field Eq.
�6� �or Eq. �5��, with �m replaced by �̄, the non-null kinematical
quantities become

Fig. 2 Procedure of homogenization of a material containing a dilute distribution of circular voids and subject to a far-field
bending stress distribution. Heterogeneous material „left… is an hÃh prism removed from an infinite sheet that is subjected to
uniaxial, linearly varying far-field stress; homogeneous Cosserat-elastic material „right… subject to the same mean moment
„produced by m̄13 and �̄11… calculated from the heterogeneous prism. For the plane strain problem „where � does not appear…,
level sets of �11 are shown; note that the values of �12, �21, and �22, shown parallel to the edges, are less than 1/100 of the
maximum value of �11 at a distance from inclusion center equal to three times the radius of the inclusion „contrast this with the
order of the effect in Fig. 1….
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	ii =
xj

Rik
+

xk

Rij
− xi

�̄

1 − �̄
� 1

Rjk
+

1

Rkj
� + 2xi��̃ij + �̃ik�

�indices not summed; i,j,k cyclic�,

	ij = − 2
1 − �̄

1 − 2�̄
�xj�̃ik + xi�̃ jk� − eijkxk

�i − � j

2

�indices not summed and all different�,

�ij =
1

2

ij�3�i − �

k=1

3

�k� + ejik� 1

Rji
+ 2�̃ki

1 − �̄

1 − 2�̄
� �13�

�indices not summed�.
The total strain energy in the cube is thus

E = ECauchy + 2h3�̄�2��ij�ij + �� ji�ij� �14�

where

�ij�ij =
3

2��i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j + �
i,j,k=1

i�j�k

3 � 1

Rij
+ 2�̃kj

1 − �̄

1 − 2�̄
�2

�15�

and

� ji�ij =
3

2��i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j − �
i,j,k=1

i�j�k

3 � 1

Rij
+ 2�̃kj

1 − �̄

1 − 2�̄
�� 1

Rji

+ 2�̃ki

1 − �̄

1 − 2�̄
� �16�

which, for plane-strain deformations in the x1, x2 plane become

�ij�ij = � 1

R23
+ 2�̃13

1 − �̄

1 − 2�̄
�2

+ � 1

R13
+ 2�̃23

1 − �̄

1 − 2�̄
�2

, � ji�ij = 0

�17�

5.4 Result 1. The nonpolar �i.e., standard effective Cauchy�
case is obtained from the strain energy Eq. �14� by setting the
internal length equal to zero, �=0; therefore, since � enters Eq.
�14� only as �2, and since its coefficient cannot be negative for
allowable modulus values, the strain energy for the effective
Cosserat material is never less than the strain energy for the
effective Cauchy material. This means that the introduction of
Cosserat effects can only increase the strain energy of the effec-
tive material and therefore can only be useful when coefficients
�R and �� are positive in plane strain �in Eqs. �7�� or when �R
− ��RR��0, 2��− ������0, and ���0, in 3D �in Eqs. �9��, i.e.,
for inclusions less stiff than the matrix. In the case of an inclusion
stiffer than the matrix, Cosserat effects make the homogenized
material even stiffer than the already overly stiff effective Cauchy
material resulting from homogenization for uniform stress. For
these situations the simple Cosserat effective material cannot pro-
vide an improvement to the standard Cauchy effective material.

5.5 Result 2 for 2D Deformations. Let us begin with the
two-dimensional �plane strain� formulation, where there is only
one remaining undetermined parameter, the internal characteristic
length �, in the elastic energy, Eq. �14� �parameter � only enters
the elastic energy in the three-dimensional case�. We seek the �
value that permits minimization of the elastic energy difference
through O�f�, for arbitrary equilibrium quadratic displacement re-
mote boundary conditions, between the heterogeneous Cauchy
material �whose energy has no O�f� term� and the homogeneous
effective Cosserat material:

ECauchy��m,�m� − �ECauchy��̄, �̄� + 2h3�̄�2�ij�ij� �18�

which is �having divided by h5�

�m

12�1 − �m�� 1

R13
2 +

1

R23
2 � +

�m�1 − �m��3 − 4�m�
3�1 − 2�m�2 ��̃13

2 + �̃23
2 �

− � �̄

12�1 − �̄�
� 1

R13
2 +

1

R23
2 � +

�̄�1 − �̄��3 − 4�̄�
3�1 − 2�̄�2 ��̃13

2 + �̃23
2 �

+ 2�̄
�2

h2�� 1

R23
+ 2�̃13

1 − �̄

1 − 2�̄
�2

+ � 1

R13
+ 2�̃23

1 − �̄

1 − 2�̄
�2��

�19�

We wish to use � to increase the elastic energy of the effective
Cosserat material in such a way that this becomes closer to the
correct value ECauchy�� ,��, but without exceeding this value for
any value of the free parameters defining the deformation modes:

1 /R13, 1 /R23, �̃13, and �̃23. Therefore, employing Eq. �7�, Eq. �19�
can be written as, retaining only terms through O�f�

� 1

R13
2 +

1

R23
2 ��Rf + ��̃13

2 + �̃23
2 ���f − 2

�2

h2�� 1

R23
+ 2�̃13

1 − �m

1 − 2�m
�2

+ � 1

R13
+ 2�̃23

1 − �m

1 − 2�m
�2� � 0 �20�

and the problem is to find an �2 /h2 such that Eq. �20� is satisfied

for all 1 /R13, 1 /R23, �̃13, and �̃23, coming as close to equality as
possible. Note that, since the term multiplying �2 is always nega-
tive, inequality �20� can be satisfied only for inclusions less stiff
than the matrix, i.e., when �R and �� are both positive.

Now, problem �20� can be transformed into the form xAx�0,

with vector 	x
= 	1/R13, �̃23,1 /R23, �̃13
, so that it becomes
equivalent to the requirement of positive semi-definiteness of the
4�4 matrix A �which is composed of two identical 2�2 blocks,
while all other entries are null�. This matrix has two distinct ei-
genvalues with double multiplicity; requiring that the smaller ei-
genvalue be zero yields

�2

h2 =
f

� 1 − �m

1 − 2�m
�2 8

��

+
2

�R

�21�

valid only for both �R and �� positive.
Obviously, the meaning of negative values of �2 is merely that

the inclusion is stiffer than the matrix and no �real� value exists
for the characteristic length that will permit the elastic energies to
match. In such cases, �=0 gives the smallest difference between
the energies. Using f =�a2 /h2, Eq. �21� becomes

� = a� �

8�1 − �m�2

�1 − 2�m�2��

+
2

�R

�22�

valid only for both �R and �� positive. Note from Eq. �22� that
�=0 when a=0, but that � /a is independent of f �under our as-
sumption of small f�. Note that in the limit of an incompressible
matrix, �m=1/2, Eq. �22� reduces to

� = a���R

2
�23�

showing that the corresponding applied deformation mode is a
pure bending. In this case, in other words, the characteristic length
Eq. �23� provides an exact match between the energies of the
actual heterogeneous solid and the homogenized one under arbi-
trary uniform plus pure bending applied loading.
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In the extreme case when the inclusion is a void, Eq. �22�
becomes

� = a� �

24�1 − �m�� 1

3
+

1 − 2�m

7 − 2�m�13 − 8�m�3 − 2�m��
�

�24�
where the radical in Eq. �24� is always positive.

The characteristic length divided by the radius of the inclusion,
� /a, is plotted in Fig. 3 versus the contrast in the inclusion/matrix
shear moduli, �i /�m. A null contrast corresponds to a void, Eq.
�24�. The different curves in the figure refer to different values of
Poisson’s ratios. The values of the curves at �i /�m=0 depend
only on �m; curves are plotted for �m and �i each having values
0.49 and 0. Note also that for �m=�i, �=0 results for �i=�m, as it
should.

For a sufficiently compliant inclusion, a positive characteristic
length for an effective Cosserat material is always found, which
decreases to zero at sufficiently high inclusion stiffness.

5.6 Result 2 for 3D Deformations. Let us now consider
three-dimensional deformations. By introducing the symbol

T2 = �
i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j �25�

the three-dimensional version of non-negativity of the energy dif-
ference Eq. �18� becomes

�
i,j=1

i�j

3
1

Rij
2 �R + �

i,j=1

i�j

3
1

RijRji
�RR + T2�� + �

i,j=1

i�j

3

�̃ij
2 �� + ��̃12�̃13

+ �̃21�̃23 + �̃31�̃32���� − 2
�̄�2

�mfh2��1 + ��
3

2
T2 + �

i,j,k=1

i�j�k

3 � 1

Rij

+ 2�̃kj

1 − �̄

1 − 2�̄
�2

− � �
i,j,k=1

i�j�k

3 � 1

Rij
+ 2�̃kj

1 − �̄

1 − 2�̄
�� 1

Rji

+ 2�̃ki

1 − �̄

1 − 2�̄
�� � 0 �26�

Equation �26� depends on the arbitrary deformation modes. These
are coupled in groups of four �each group entering in exactly the

same way�, plus T; for example, 1 /R13, 1 /R31, �̃21, �̃23 are
coupled. Thus it is sufficient to consider these four parameters
together with T, and take all others equal to zero. Doing this, Eq.
�26� becomes, retaining only leading-order terms in f

� 1

R13
2 +

1

R31
2 ��R +

2

R13R31
�RR + T2�� + ��̃21

2 + �̃23
2 ���

+ �̃21�̃23��� − 2
�2

fh2��1 + ��
3T2

2
+ � 1

R13
+ 2�̃23

1 − �m

1 − 2�m
�2

+ � 1

R31
+ 2�̃21

1 − �m

1 − 2�m
�2

− 2�� 1

R13
+ 2�̃23

1 − �m

1 − 2�m
�� 1

R31

+ 2�̃21
1 − �m

1 − 2�m
�� � 0 �27�

Equation �27� involves a quadratic form, so that it can be repre-
sented in matrix form as

��� − 3
�2

fh2 �1 + ���T2 + xAx � 0 �28�

where vector 	x
= 	1/R13,1 /R31, �̃21, �̃23
. Matrix A is a 4�4
block and the Condition �26�, viewed as the condition of positive
semi-definiteness of A �since the coefficient of T2 must be �0�,
yields non-negativeness of four eigenvalues, plus non-negativity
of the coefficient of T2. Two of these conditions can be shown to
be contained within the other two, from which two values of
Cosserat length � can be obtained to ensure positive semi-
definiteness of A. The minimum among these two lengths, plus
that obtained considering T, yields the Cosserat length for Condi-
tion �26� to be satisfied

���� = af1/6�4�

3
�1/3

g��i,�m,�i,�m,�� �29�

where

g��i,�m,�i,�m,�� = min� ��

3�1 + ��
,

�1 − 2�m�2

2�1 + ��� 8�1 − �m�2

2�� − ���

+
�1 − 2�m�2

�R − �RR
� ,

�1 − 2�m�2

2�1 − ��� 8�1 − �m�2

2�� + ���

+
�1 − 2�m�2

�R + �RR
��

1/2

�30�

Fig. 3 Characteristic length divided by circular cylindrical in-
clusion radius for a homogeneous Cosserat material deduced
from homogenization of a matrix containing a dilute distribu-
tion of parallel, infinite circular cylindrical inclusions „plane
strain, Eq. „22……
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in which all terms are always non-negative for inclusions less stiff
than the matrix. Equation �29� applies for given values of �i, �m,
�i, �m, and �.

In Eq. �30�, the minimum among the three functions �call them
gi� is taken. These functions have the typical dependence on �
shown in Fig. 4, drawn for �i /�m=0 �so that the inclusion is a
void� and �m=0.49 �a case that will also be considered later�. In

this figure, one of the gi’s corresponds to the torsion mode, while
the other two modes involve both bending and the modes de-

scribed by the �̃ij.
Since � is a constitutive parameter which can be chosen so that

the effective Cosserat material best mimics the actual heteroge-
neous material’s response, it is optimal to choose it so that the
Cosserat effective material matches the actual heterogeneous one
for two modes of deformation, which corresponds to the intersec-
tion of the two lower curves in Fig. 4, that is, to the largest of the
minima �i.e., the supremum� of the three gi’s �corresponding to
�max in the figure�. Therefore

� = af1/6�4�

3
�1/3

sup
���−1,1�

g��i,�m,�i,�m,�� �31�

The case of an incompressible matrix ��m→1/2� is worth not-
ing. In this case, Eq. �30� becomes

g��i,�m,�i,�m,�� = min� ��

3�1 + ��
,

�R − �RR

2�1 + ��
,

�R + �RR

2�1 − �� �1/2

�32�
showing that bending and torsion are the only modes entering the
formula. In this case, in other words, the characteristic length �
and parameter � found from Eq. �31�, in which Eq. �32� is used
for function g, provide an exact match between the energies of the
actual heterogeneous solid and the homogenized Cosserat one un-
der arbitrary uniform plus bending and torsion applied loading.

The limit �i→0 of Eq. �31� yields the case of a spherical void

� = af1/6
�3 4�/3

�7 − 5�m

max
���−1,1�

min� 5�1 − �m�
12�1 + ��

,
5�1 − �m��4 − �m�11 − 15�m��
4�13 − �m�37 − 40�m���1 + ��

,
�1 + �m�	17 − �m�74 − �m�129 − 80�m��


2�1 − �m�	21 − �m�78 − �m�121 − 80�m��
�1 − ���
1/2

�33�

In the case of matrix incompressibility, �m→1/2, Eq. �33� be-
comes

� = af1/6
�3 4�/3

6
�41

6
, � = −

31

41
�34�

in which case both the bending and the torsion modes are simul-
taneously matched.

We emphasize with respect to all the above cases that when the
far-field applied loading is such that our “optimal” choice of the
Cosserat parameter does not provide an exact match between the
effective Cosserat material’s energy and that of the actual hetero-
geneous material, our optimal effective Cosserat material will still
be an improvement over the standard effective Cauchy material
for all equilibrium uniform plus linear far-field applied loadings
�for compliant-inclusion-type composites�.

The characteristic length divided by the radius of the inclusion
multiplied now by the volume fraction to the power −1/6, i.e.,
f−1/6� /a, is plotted in Fig. 5 versus the contrast in the inclusion/
matrix shear moduli, �i /�m, so that a null contrast corresponds to
a void, Eq. �33�. The different curves in the figures refer to dif-
ferent values of Poisson ratios, the same investigated for plane
strain ��m and �i each having values 0.49 and 0�. The values of the
curves at �i /�m=0 depend only on �m.

The figures show that the qualitative behavior is the same for
the two-dimensional and three-dimensional cases: for a suffi-
ciently compliant inclusion, a positive characteristic length for an
effective Cosserat material is always found, which decreases to
zero at sufficiently high inclusion stiffness. However, there are
also important differences between the 2D and the 3D cases:

1. For all values of the Poisson ratios of the matrix and inclu-
sion, �� vanishes when �i=�m and then becomes negative
for �i��m. Therefore, due to the effect of the torsion mode
and in contrast to the 2D case, it is always impossible to
produce a positive characteristic length � for �i��m, re-
gardless of the values of the Poisson ratios, so that �=0
always results for �i��m �and not only for the special case
�m=�i�;

2. The curve for � for the case �i=0 and �m=0.49 for 3D
displays a jump to zero �not found for 2D deformations� at
�i=�m. This behavior, occurring when �m��i, is related to
torsion and to the fact that � simultaneously tends to the
limit −1. This means that the quantity �2�1+��, related to
the characteristic length in torsion, is not discontinuous and
correctly approaches zero when �i /�m tends to 1; and

3. Result 3. The characteristic length is substantially smaller in
three dimensions than in two. This is partially due to the fact
that ��af1/6 in three dimensions, whereas ��a in two di-
mensions. The figures show that the largest characteristic
length �strongest Cosserat effect� occurs for an incompress-
ible matrix containing voids ��m=0.5, �i=0�, in which case

� � 0.702af1/6, � =
��

2
a � 0.886a �35�

for 3D and 2D, respectively. For example, if f =0.1, Eqs.
�35� show � /a in 3D to be 54% of that in 2D.

Fig. 4 The three functions gi appearing in Eq. „30…, among
which the minimum is selected for given values of �
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6 Unconstrained Cosserat Materials do not Change
Results 1, 2, and 3

At this point we are in a position to address the following
question: can Result 1, stating that Cosserat effects only arise for
inclusions less stiff than the matrix, be changed by making re-
course to a more general theory of micropolar behavior than the
constrained-rotation theory of Eq. �11�? Moreover, does Result 2,
providing a closed-form formula for the characteristic length �,
and consequent Result 3, change if a general theory of micropolar
behavior is assumed? The answers to these questions turn out to
be negative, but they require a digression.

A general isotropic, linear micropolar material is characterized
by the following constitutive equations �16,2�

�ij = �	kk
ij + 2�	ij + �eijk�k − �k� ,

�ij = ��k,k
ij + 4��2�� j,i + ��i,j� �36�

where �ij and �ij are the asymmetric force-stress and couple-
stress tensors, respectively, and k and �i are the macro- and
micro-axial rotation vectors, respectively. Constants � and � play
the role of the usual Lamé moduli of Cauchy elasticity, and �, �,
�, and � are new material constants.

The important point is to note that Eqs. �11� are obtained from
Eqs. �36� by taking �k=k; then �ij and �ij reduce to �ij �the
symmetric part of the stress tensor� and mij �the deviator of the
couple-stress tensor�, respectively, and the terms containing � and
� in Eqs. �36� become identically zero.

Now we note that in the unconstrained theory, kinematical
boundary conditions must involve prescription of displacements,
macrorotations, and microrotations. If we make the sensible
choice that the microrotations are identical to the macrorotations
on the boundary and these are those arising from displacements
Eqs. �6�, then a �unique� solution to the full unconstrained theory
produces the same energy Eq. �14�. The same results for �, Eqs.
�22� and �31�, are obtained. Now, however, parameters � and �
remain undetermined. Thus we find no advantage to use of the
more complex unconstrained Cosserat model in the homogeniza-
tion problem, and indeed we find the constrained-rotation model
employed by Koiter �15� to have the great advantages of simplic-
ity and physical transparency.

7 Experiments and Applications
We have already reported that our results explain and confirm

the Gauthier �7� experimentally based claim that “an anti-
micropolar phenomenon” is found for inclusions stiffer than the
matrix. For inclusions less stiff than the matrix, our theory pro-
vides Cosserat parameters � and � �only � for plane strain� for the
effective material which exactly match two quadratic deformation
modes �one in plane strain�, so that these parameters would be
found in an ideal experiment performed on a specimen, when the
boundary conditions corresponding to those modes are imposed.
With the exception of an incompressible matrix material, the qua-
dratic modes correspond to a combination of bending, torsion, and
other modes, which are usually not experimentally investigated.

7.1 Bending and Torsion Experiments, and Applications
Involving Pure Bending and Torsion Loading. Common experi-
ments involve bending �usually bending of a plate deformed in
plane strain� and torsion �usually of a bar with circular cross sec-
tion�. Performing such experiments will not in general �again,
with the exception of plane-strain bending of a composite with an
incompressible matrix material� yield our Cosserat parameters.
This is because we have selected these to give the greatest pos-
sible improvement over the effective Cauchy material for all pos-
sible imposed linear plus quadratic displacement fields, such that
the effective Cosserat material is never stiffer than the actual het-
erogeneous one. If, however, the applied loading of interest is
known to consist of uniform plus pure bending loading in 2D, or
uniform plus pure bending and pure torsion loading in 3D, the
effective Cosserat parameters can be chosen to produce an exact
energy match between the effective Cosserat material and the ac-
tual heterogeneous one.

In particular, for plane-strain deformations of a slab containing
a dilute distribution of cylindrical inclusions �with axis parallel to
the depth�

�2D-bending = a���R

2
�37�

with �R given by Eq. �8�1, provides an exact match for a plane
strain bending experiment.

For plane-strain deformations of a slab containing a dilute dis-
tribution of spherical inclusions �note that, due to the plane strain
constraint, parameter � does not enter�

�3D plane-strain bending = af1/6�4�

3
�1/3��R

2
�38�

where �R is given by Eq. �10�1, gives an exact match for a plane-
strain bending experiment.

For torsion of a cylindrical specimen �of circular cross section�
containing a dilute distribution of spherical inclusions

Fig. 5 Characteristic length divided by spherical inclusion ra-
dius and multiplied by f−1/6

„top… and parameter � „bottom… for a
homogeneous Cosserat material deduced from homogeniza-
tion of a matrix containing a dilute distribution of spherical in-
clusions „Eq. „31……
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���1 + ��torsion cylindrical bar = af1/6�4�

3
�1/3���

3
�39�

where �� is given by Eq. �10�3, gives an exact match. Obviously,
� and � can be chosen to satisfy Eqs. �38� and �39� simulta-
neously.

7.2 A Comparison With Existing Experimental Results. It
is interesting now to compare our results with experiments per-
formed on material containing compliant inclusions, for instance
voids. In particular, our results indicate that the most effective
experimental setting to display Cosserat effects would be a mate-
rial containing cylindrical voids deformed in plane strain, with a
matrix Poisson’s ratio tending to the limit value 0.5; for instance,
a rubber block with cylindrical holes. Unfortunately, nothing like
this experimental setup is available in the literature and also noth-
ing pertaining to dilute suspensions of spherical voids.

The only results that we were able to find are those by Lakes
�2� pertaining to two foams with nearly spherical voids. Specifi-
cally, one material is a syntactic foam consisting of hollow glass
microbubbles embedded in an epoxy matrix, for which the mean
diameter of voids is 0.125 mm and the volume fraction is 0.468.
The second material is a high-density rigid polyurethane closed-
cell foam, for which the mean diameter of voids is 0.1 mm and
the volume fraction is 0.690. Within the general Cosserat frame-
work Eqs. �36�, Lakes �2� finds �=0.032 mm for the first material
and �=0.327 mm for the second. Lakes also determines the quan-
tity ��2�1+��, which he estimates to be 0.065 mm and 0.62 mm,
respectively.

There are several difficulties in attempting to compare our re-
sults with these materials:

1. The void volume fraction is so high that the dilute approxi-
mation is almost certainly not directly applicable;

2. The mechanical properties of the matrix material are not
available;2 and

3. The voids in the first material are coated by a glass shell of
unknown stiffness.

Since these factors make a precise comparison impossible, we
simply employ our model results with �m=1/2, Eqs. �34�, to make
an order-of-magnitude comparison. Thus Eqs. �34� give �
=0.039 mm and ��2�1+��=0.030 mm for the first material and
�=0.033 mm and ��2�1+��=0.025 mm for the second. These
results are only in qualitative agreement with the experimental
findings; however, they are consistent with the fact that our model,
based on the dilute approximation, underestimates the character-
istic length � for the given high values of the pore volume frac-
tions. The fact that the characteristic length is better predicted for
the first material than for the second is probably a consequence of
the presence of the glass shell coating the voids, providing a stiff-
ness, which strongly decreases �.

8 Summary of General Methodology
Here we summarize the general methodology proposed in this

paper and employed in the specific cases of a matrix containing a
dilute suspension of spherical or circular cylindrical inclusions.
We emphasize that our general methodology is not restricted to
composites consisting of a matrix containing a dilute concentra-
tion of another phase. To determine the effective moduli for a
homogeneous Cosserat-elastic material that best approximates a
heterogeneous Cauchy-elastic material under general applied
loadings, one first determines the effective Cauchy-elastic moduli
in the standard manner �i.e., using the most accurate approach
available from standard composite materials theory. We empha-

size that we regard the uniform loading as the primitive case, so
that this initial determination will not be affected by subsequent
calculations�. One then needs to compute the elastic energy in the
heterogeneous material of interest when this is subjected to a gen-
eral equilibrium linearly varying applied traction �or quadratically
varying displacements� on the boundary. One then compares this
energy to the energy computed for the homogeneous Cosserat
material �whose Cauchy moduli have already been determined via
the standard homogenization approach� subjected to the same qua-
dratically varying displacements and rotations as in the Cauchy
solution, and one chooses the Cosserat parameters so that these
two energies are in closest possible agreement. In the specific
cases analyzed in this paper, the Cosserat length is nonzero when
the heterogeneous material is less stiff than its predominant phase,
and zero otherwise.

9 Conclusions
It has been shown that a dilute dispersion of elastic isotropic

spherical inclusions in a 3D composite �and infinitely long, paral-
lel circular cylindrical inclusions in a 2D one� produce Cosserat
effects when the inclusions are less stiff than the matrix. The
effects induce a characteristic length in three dimensions

� � af1/6

and one in two dimensions

� � a

where a is the inclusion radius and f the volume fraction of the
inclusion material. The maximum characteristic length occurs
when the inclusions are cavities, and the matrix material is incom-
pressible; this length is substantially larger in 2D versus 3D for
cavities having the same radius. Cosserat effects are on the other
hand excluded for the opposite situation of inclusions having stiff-
nesses equal to or greater than that of the matrix.

An important practical implication of our findings is that the
response of a composite material containing inclusions less stiff
than the matrix and subjected to nonuniform stressing can be more
accurately represented by a homogeneous Cosserat material with
appropriately chosen moduli than by a standard �Cauchy� effec-
tive material.
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Appendix A: The State of the Art on Cosserat Effects as
Deduced From Elastic, Inhomogeneous Media

The literature on Cosserat effects arising from heterogeneous
media is rife with conflicting views. Berglund �17�, claiming that
previous results �18–20� were inconsistent, provides two theoret-
ical arguments to disprove micropolar effects, employing both a
discrete structural model of a cubic lattice and a framework for
homogenization of a heterogeneous continuum. These appear to
be far from conclusive, since the former invokes reduction of
structural dimensions to zero �which is inconsistent with the fact
that Cosserat effects should be related to some non-null character-
istic microstructural length� and the latter does indeed predict
some micropolar effects, which are then argued to be negligible.
On the contrary, Cosserat behavior was found by Wang and
Stronge �21� for a hexagonal lattice. Moreover, certain theoretical
arguments in favor of Cosserat behavior have been provided by
Achenbach and Hermann �22� and Beran and McCoy �23�, but the

2Only �m is needed to determine �. However, the knowledge of �m would allow
us to determine �̄ and �̄ from Eqs. �1�, which compared to experimental results by
Lakes would permit an assessment of the quality of the estimate.
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former holding only in certain circumstances involving dynamical
effects and the latter apparently finally disproving the effects for
composites with homogeneous and isotropic statistics of inclu-
sions. Recently, Forest �24�, Ostoja-Starzewski et al. �25�, and
Bouyge et al. �26� provided numerical finite element investiga-
tions supporting Cosserat effects in heterogeneous materials. For-
est treats an anisotropic composite with an unusual microstruc-
ture, and does not directly provide values for the Cosserat
characteristic length. The latter two papers treat plane problems of
a matrix containing a dispersion of circular inclusions; they find a
nonzero Cosserat length both for inclusions stiffer and more com-
pliant than the matrix, a fact contradicted previously by experi-
ments �6,7�, and now by the analytical results derived in the
present paper.

When Eq. �21� is plotted using a semi-logarithmic scale, such
as that employed in Ref. �26� for their parameter values of �i
=�m=0.3 and f =0.18, we obtain the graph shown in Fig. 6. The
numerical values at high contrast are similar to those found in Ref.
�26� �their Fig. 8�, but our results: �1� correctly approach zero
when the elastic mismatch disappears �while a nonzero character-
istic length is found in Ref. �25� even for zero mismatch�; and �2�
show that Cosserat effects are excluded for mismatch greater than
1 �in which case � would be imaginary�.

Appendix B: Plane-Strain Solution of an Elastic Circu-
lar Inclusion in an Infinite Elastic Matrix, Subject to
Remote Displacements Field Eqs. (5)

We use the Kolosov–Muskhelishvili �11� complex potentials
representation of the general solution for plane problems in ho-
mogeneous isotropic linear elastostatics, which in polar coordi-
nates is

ur + iu� =
1

2�
e−i�����z� − z���z� − ��z�� �B1�

�rr + ��� = 4 Re����z��

��� − �rr + 2i�r� = 2e2i��z̄���z� + ���z�� �B2�

where z=x1+ ix2=rei�, ��z� and ��z� are analytic functions, Re��
denotes the real part, and �=3–4� for plane strain.

First, we consider a pure bending far-field applied loading, cor-
responding to

�22 = mx1, �11 = �12 = 0 for r → � �B3�
or, in terms of complex potentials

��z� = ��z� =
m

8
z2, for �z� → � �B4�

The solution for a matrix containing an inclusion of radius a is

��z� =
m

8
z2 +

�i − �m

2��m�i + �m�
ma4

4z2 �B5�

��z� =
m

8
z2 +

�m�i − �m�i

�i + �i�m

ma4

8z2 +
�i − �m

�m�i + �m

ma6

4z4 �B6�

in material outside the inclusion, and

��z� =
��m + 1��i

�i + �i�m

m

8
z2 −

�i

�m

�i + �m��i − �m − 1�
�i��i + �i�m�

ma2

4
�B7�

��z� =
��m + 1��i

�m�i + �m

m

8
z2 �B8�

in material inside the inclusion.
Second, we consider a quadratic far-field applied displacement

field, corresponding to

u1 = �̃13�x1
2 −

�m + 1

�m − 1
x2

2�, u2 = u3 = 0 for r → � �B9�

or, in terms of complex potentials

��z� =
�m�̃13

�m − 1
z2, ��z� = −

�m�m�̃13

�m − 1
z2 for �z� → �

�B10�
The solution is

��z� =
�m�̃13

�m − 1
z2 +

�m − �i

�m�i + �m

a4�m�m�̃13

z2��m − 1�
�B11�

��z� = −
�m�m�̃13

�m − 1
z2 +

�m�i − �m�i

�i + �i�m

a4�m�̃13

z2��m − 1�

+
�m − �i

�m�i + �m

2a6�m�m�̃13

z4��m − 1�
�B12�

in material outside the inclusion, and

��z� =
��m + 1��i

�i + �i�m

�m�̃13

�m − 1
z2 −

�i

�m

�i + �m��i − �m − 1�
�i��i + �i�m�

2a2�m�̃13

�m − 1

�B13�

��z� = −
��m + 1��i

�m�i + �m

�m�m�̃13

�m − 1
z2 �B14�

in material inside the inclusion.

Appendix C: Three-Dimensional Solution of a Spherical
Elastic Inclusion in an Infinite Elastic Matrix, Subject
to Remote Displacements Field Eqs. (6)

C.1 Torsion Prescribed at Infinity
First, we consider an applied far-field torsion, consisting of a

different �in general� angle of twist/length applied about each of
the three Cartesian axes. This corresponds to the equilibrium dis-
placement field

u1 = ��2 − �3�x2x3, u2 = ��3 − �1�x3x1,

u3 = ��1 − �2�x1x2 for r → � �C1�
or, in spherical coordinates

ur = 0, u� = − ��1 − �2�r2 sin � cos � sin �

Fig. 6 Characteristic length divided by the cell size for volume
fraction of disperse phase f=0.18, for a Cosserat material de-
duced from homogeneization of a matrix containing a dilute
distribution of parallel, infinite circular cylindrical inclusions
„plane strain, Eq. „21……
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u� = −
�1 + �2 − 2�3 + ��1 − �2�cos 2�

4
r2 sin 2� for r → �

�C2�
The solution to this applied far-field, satisfying equilibrium every-
where, and displacement and traction continuity across the
inclusion-matrix boundary r=a, is

ur = 0

u� = − ��1 − �2�sin � cos � sin ��r2 +
a5��m − �i�
r3�4�m + �i�

�
u� = −

�1 + �2 − 2�3 + ��1 − �2�cos 2�

4
sin 2��r2

+
a5��m − �i�
r3�4�m + �i�

� �C3�

in material outside the inclusion, and

ur = 0

u� = − 5�mr2 �1 − �2

4�m + �i
sin � cos � sin �

u� = − 5�mr2�1 + �2 − 2�3 + ��1 − �2�cos 2�

4�4�m + �i�
sin 2�

�C4�
in material inside the inclusion.

C.2 Bending and the Other Equilibrium Quadratic
Displacement Modes Prescribed at Infinity

Second, we consider the applied far-field equilibrium displace-
ment field

u1 = −
1

2R23
�x2

2 +
�m

1 − �m
x1

2� −
1

2R32
�x3

2 +
�m

1 − �m
x1

2� + ��̃13

+ �̃12�x1
2 − 2

1 − �m

1 − 2�m
��̃13x2

2 + �̃12x3
2�

u2 =
x2x1

R23
, u3 =

x3x1

R32
for r → � �C5�

from which the general representation Eq. �6� can be obtained by
using superposition and adding torsion. The bending we treat is
plane-strain bending, while Sen �13� and Das �14� have consid-
ered a pure �uniaxial-stress� bending. Their case is recovered by
redefining coefficients 1 /R23 and 1/R32 as follows

1

R23
= −

�mA

Em
+

C

Em
and

1

R32
=

A

Em
−

�mC

Em
�C6�

where A and C are arbitrary constants and Em is the elastic modu-
lus of the matrix material. The case C=0 is that analyzed in Refs.
�13,14�, and this is sufficient to solve the general case Eq. �C6� via
superposition. We note also that the modes defined by coefficients

�̃ij can be redefined in a way similar to Eq. �C6�, and again by
superposition it is sufficient to solve for the case

�̃13 = −
1 − 2�

3 − 4�
�̃12 �C7�

In polar coordinates, the far-field representation Eq. �C5� with
Eq. �C6� �taking C=0 and all other coefficients null� has the same
structure as Eq. �C5� with Eq. �C7� �with all other coefficients
null�. This is

ur = Br2 cos � sin ��c1 + c2 cos 2��

u� = Br2 cos � cos ��c3 + c2 cos 2��

u� = Br2 sin ��c4 + c5 cos 2�� �C8�

where

B =
A

4Em
, c1 = c4 = c3 + 4 = 1 − �m, c2 = c5 = 1 + �m �C9�

for bending, while

B = −
2�1 − �m��̃12

�1 − 2�m��3 − 4�m�
, c1 = c3 = − c4 = 1 − �m,

c2 = − c5 = 2 − 3�m �C10�

for the mode defined by coefficients �̃ij.
The solution to this applied far-field displacement field that

satisfies equilibrium everywhere, and displacement and traction
continuity across the inclusion-matrix boundary r=a, is

ur = B cos � sin ��r2�c1 + c2 cos 2�� +
a5�k1 + k2 cos 2��

r3

+
a7�k3 + k4 cos 2��

r5 �
u� = B cos � cos ��r2�c3 + c2 cos 2�� +

a5�k5 + k6 cos 2��
r3

+
a7�k7 + k8 cos 2��

r5 �
u� = B sin ��r2�c4 + c5 cos 2�� +

a5�k9 + k10 cos 2��
r3

+
a7�k11 + k12 cos 2��

r5 � �C11�

in material outside the inclusion, and

ur = Br2 cos � sin �� c0

r2 + m1 + m2 cos 2��
u� = Br2 cos � cos �� c0

r2 + m3 + m2 cos 2��
u� = Br2 sin ��−

c0

r2 + m4 + m5 cos 2�� �C12�

in material inside the inclusion. �The Sen �14� solution violates
displacement continuity across r=a since it is missing the c0
terms in Eq. �C12�.� All coefficients appearing in the above Eqs.
�C11� and �C12� are dimensionless and are defined as

k1 =
12k8�1 − 4�m� − 5�4c1�2 − 3�m� − 3c2 − 3m1�1 − 4�m��

15�1 − 4�m�

−
15c2 − 25m1 + k8�22 − 28�m�

15�1 − 4�i�

k2 =
14k8�3 − 2�m�

15
, k3 = −

4k8

5
, k4 = −

4k8

3
,

k5 = −
k1

2
− k10 +

k2�1 + 2�m�
2�3 − 2�m�

k6 = k2 −
5k2

2�3 − 2�m�
, k7 = −

7k8

15
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k8 =
15c2�Em�1 + �i� − Ei�1 + �m��

2Ei�1 + �m��11 − 14�m� + Em�13 − 7�m��1 + �i�

k9 =
k1

2
−

k2�1 − �m�
3 − 2�m

k10 =
Em�1 + �i� − Ei�1 + �m�

Ei�1 + �m� + 4Em�1 + �i�
�2�m�c1 + 3c2 + 2c3� − 3c1 − c3

1 − 4�m

+
c2�Ei�27 − �m − 28�m

2 � + 4Em�2 + 7�m��1 + �i��
2Ei�1 + �m��11 − 14�m� + Em�1 + �i��13 − 7�m��

k11 = −
k8

5
, k12 = −

k8

3

c0 =
− 5�5c1 − 3c2�
15�1 − 4�m�

−
5�3c2 − 5m1� + k8�22 − 28�m�

15�1 − 4�i�

m1 =
5�1 − �m��26c1 − 3c2 − 14�c1 + 3c2��m�

3�1 − 4�m��13 − 7�m�

−
�5c1 − 3c2��1 − �m��5Em + 2Ei�1 + �m��
3�1 − 4�m��2Em�2 − 3�i� + Ei�1 + �m��

−
42c2Ei�1 − �m��1 + �m��11 − 14�m�

�13 − 7�m��2Ei�1 + �m��11 − 14�m� + Em�1 + �i��13 − 7�m��

m2 = c2 +
2k8�11 − 14�m�

15

m3 = − k10 +
1

2
�c1 + 2c3 +

5c1 − 3c2

1 − 4�m
+

3c2

1 − 4�i
� −

m1�3 − 2�i�
1 − 4�i

+
k8�27 + 24�i − 28�m�1 + 2�i��

15�1 − 4�i�

m4 =
m1�3 − 2�i� − 2m2�1 − �i�

1 − 4�i
,

m5 = − m3 +
m2�1 + 2�i� − m1�3 − 2�i�

1 − 4�i

where Em, Ei, and �m, �i are the elastic moduli and Poisson’s
ratios of the matrix and inclusion materials, respectively.
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Nonlinear Vibrations of an
Extensible Flexible Marine Riser
Carrying a Pulsatile Flow
The influence of transported fluid on static and dynamic behaviors of marine risers is
investigated. The internal flow of the transported fluid could have a constant, a linear, or
a wave velocity. The riser pipe may possibly experience the conditions of high extensi-
bility, flexibility, and large displacements. Accordingly, the mathematical riser models
should be governed by the large strain formulations of extensible flexible pipes trans-
porting fluid. Nonlinear hydrodynamic dampings due to ocean wave–pipe interactions
implicate the high degree of nonlinearity in the riser vibrations, for which numerical
solutions are determined by the state–space–finite-element method. It is revealed that the
impulsive acceleration of internal flow could seriously relocate the vibrational equilib-
rium positions of the riser pipe. The fluctuation of the pulsatile flow relatively introduces
the expansion of amplitudes and the reduction of frequencies of the riser vibrations. The
pulsatile frequencies of the internal flow in wave aspect could reform the oscillation
behavior of the conveyor pipe. �DOI: 10.1115/1.2711226�

Keywords: internal pulsating flow, large strain formulations, extensible flexible risers,
Poisson’s ratio effect

1 Introduction

The employment of flexible marine risers as the transporters of
crude resource fluids drilled from beneath the deep ocean has been
operated over the past decade. In this time, the analysis and design
of those have been developed progressively to accumulate accu-
racy in predicting and controlling mechanical behavior under ser-
viceability requirements �1–4�. Nevertheless, because of various
sources of nonlinearity to which the riser may be subjected, the
development so far has never been enough, and still must be con-
tinued to achieve the proper way to treat an assortment of situa-
tions that the riser may encounter. In the applied mechanics re-
search area, the flexible riser may be assorted as follows:

1. The tensioned pipe undergoing large displacements;
2. The extensible elastica under fluid pressure fields; and
3. The largely sagged conveyer of the pulsating flow.

Based on the following literature review, it is shown that these
nonlinear mechanics have not yet been elucidated comprehen-
sively, whether under onshore or in offshore environments. The
tensioned pipes were studied by numerous research works �5–10�;
however, they were restricted to the small displacement theory.
For the analysis of elasticas, the extensible elastica theories have
been well established �11,12�; however, the elastica behavior un-
der fluid pressure fields versus the Poisson’s ratio effect has never
been imparted. Finally, the pulsatile flows induced vibrations of
pipe structures were investigated by a number of researchers
�13–15�, but were limited to the cases of straight or taut pipes.
Based on the literature of marine risers �16–24�, the combination
effects of the riser extensibility and the pulsating flow have never
been studied. Almost all of the research works concerning the
internal flow effects on the riser behavior are focused on steady
flow, inextensibility condition, and otherwise slug flow.

Adding to the literature, this paper therefore aims to explore the
effects of internal pulsating flow on static and dynamic behaviors
of the extensible riser pipe. The factors considering the impor-
tance of the effects were discussed in the paper by Chucheepsakul
et al. �25�. The following assumptions are stipulated in the present
analysis.

1. The pipe materials are linearly elastic;
2. At the undeformed state, the pipes are initially straight, and

have no residual stresses;
3. The pipes are sufficiently thick walled to suppose that, ide-

ally, their cross sections remain circular after change of
cross-sectional size due to the effects of fluid pressures and
Poisson’s ratio, so that the elastic rod theories and the ap-
parent tension concept are usable for handling the effects of
large and radial displacements of pipe wall, and Brazier’s
effect or flattening of bent tubes is negligible;

4. Longitudinal strain is large, but shear strain is insignificant
for elastic rods with high slenderness ratio;

5. Plane sections of the pipes remain plane at all states;
6. The internal and external fluids are inviscid, incompressible,

and irrotational. Their densities are uniform along arc
lengths of the pipes;

7. The internal flow is the one-dimensional plug laminar flow;
8. Morison’s equation is adopted for evaluating external hydro-

dynamic forces of external fluid. The distributed couple in-
duced by a flow asymmetry due to vortex shedding is ne-
glected;

9. The effect of rotary inertia is negligible; and
10. Although a realistic characterization of pulsatile flow ve-

locity in practice might require a statistical description, to
gain insight into the problem, the flow velocity is repre-
sented herein as

Vi = Vio + Vid = Vio + aiot + Via cos �it �1�

where Vio and Vid are the static and dynamic parts of the
internal flow velocity, respectively.

The static velocity Vio is not constant, and thus represents the
nonuniform internal flow. It varies along the pipe’s arc length s0

1Corresponding author.
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due to change of the cross-sectional size of the pipe element under
the gradient of pressure fields. In the updated Lagrangian control

volume �25�, it is expressed that Vio= V̄i / �1−�o�, in which V̄i is
the constant mean flow velocity of a fully developed flow, and �o
is the statical axial strain varying along the arc length of the pipe.

The dynamic velocity aiot represents a transient state of internal
flow, where the constant step of the internal flow acceleration aio
is applied. The oscillatory flow of the transported fluid caused by
the operation of a high-pressure pump may be described by the
pulsatile velocity Via cos �it, where Via is the fluctuation ampli-
tude, and �i the pulsation frequency.

Once differentiating Eq. �1� is to yield the internal flow accel-
eration

ai =
�Vid

�t
= aio − Via�i sin �it �2�

To undertake the effect of high extensibility of the risers, the
mathematical formulations based upon the work-energy principles
and the extensible elastica theory �25� are adopted.

2 Mathematical Formulations and Solution Methods
Based upon the large strain formulations �25� of extensible flex-

ible marine pipes transporting fluid as shown in Fig. 1, the total
governing equations for nonlinear dynamic, large amplitude vibra-
tions of the risers could be obtained in the updated Lagrangian
Cartesian coordinates �x ,y� as

mẍ + cẋ + gẋ� + �kb1x��� + �kb2x��� + kt1x� + kt2x� = f �3�

where x is the position vector; m the total mass matrix; c the
hydrodynamic damping matrix; g the gyroscopic matrix; kb1 and
kb2 the bending stiffness matrices; kt1 and kt2 the axial stiffness
matrices; and f the external load vector �see Ref. �25� for more
details�.

For the vibrations with infinitesimal amplitudes, the axial strain
� in the stiffness matrices can be approximated by the two-term
binomial expansion

�4�

where s̄�, s0�, and s� are the differential arc lengths at the unde-
formed, the equilibrium, and the displaced states; and �d is the
dynamic updated Green strain that can be expressed as

�d =
1

s0�
2�xo�u� + yo�v� +

u�2

2
+

v�2

2
� �

1

s0�
2 �xo�u� + yo�v�� �5�

in which �xo ,yo� is the Cartesian coordinates at the equilibrium
state; and �u ,v� the displacement vector. Therefore, the apparent
tension �25� corresponding to the axial strain, included in the axial
stiffness matrices, could be written as

�6�
where E is the elastic modulus; � Poisson’s ratio; Aeo, Aio, AP0 the
outside, inside, and cross-sectional area of the pipe at the equilib-
rium state; pe and pi the external and internal fluid pressures; and
T is the true wall tension of which determination is given in the
Appendix .

By separation of variables, the displacement vector is assumed
as

�d	 = �u v 	T = �N�yo���dn�t�	 �7�
where the generalized coordinates of the nodal displacements for
each element are

�dn	 = �u1 u1� u1� v1 v1� v1� 
 u2 u2� u2� v2 v2� v2�	
T

�8�
and the shape function matrix at the displaced state is

�N� = �N51 N52 N53 0 0 0

0 0 0 N51 N52 N53
�N54 N55 N56 0 0 0

0 0 0 N54 N55 N56
 �9�

Note that N5i is the coefficient of the fifth-order polynomial shape
functions.

Substituting Eqs. �1�, �2�, �6�, and �7� into Eq. �3� together with
neglecting the higher-order terms, eliminating the time-
independent terms, and following the standard procedures of the
Galerkin finite element method, the system of partial differential
Eq. �3� could be transformed into the system of ordinary differen-
tial equations

�m�e���d̈n	 + ��c�e�� + �g�e����ḋn	 + �k�e���dn	 = �f�e�	 �10�

where the element mass matrix �25� is

�m�e�� =�
�

��N�Ts0��mP0 + mio + Cao
* ��1 0

0 1
�N��d�

�11a�

the element hydrodynamic damping matrix �25� is

�c�e�� =�
�

��N�Ts0�� Ceqxo
* Ceqxyo

*

Ceqxyo
* Ceqyo

* �N��d� �11b�

the element gyroscopic matrix �25� is

�g�e�� =�
���N�TmioVio�2 −

xo�
2

s0�
2 −

xo�yo�

s0�
2

−
xo�yo�

s0�
2 2 −

yo�
2

s0�
2
��N���d�

�11c�

the element stiffness matrix �25� is

�k�e�� = �kb1
�e�� + �kb2

�e�� + �kt1
�e�� + �kt2

�e�� �11d�

in which the bending stiffness matrix of the fourth-order deriva-
tive �25� is
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�kb1
�e�� =�

�

��N��T Bo

s0�
5� yo�

2 − xo�yo�

− xo�yo� xo�
2 �N���d� �11e�

the bending stiffness matrix of the third-order derivative �25� is

�kb2
�e�� =�

�

��N��TBo�o

s0�
4 � 2xo�y� yo�

2 − xo�
2

yo�
2 − xo�

2 − 2xo�yo�
�N���d�

�11f�

the axial stiffness matrix of the second-order derivative �25� is

Fig. 1 An extensible flexible marine riser carrying a pulsatile flow „a…; and schematic of deformations „b…
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�kt1
�e�� =�

���N��T�Tao − mioVio
2

s0�
��1 0

0 1
�N��

+ �N��TEAP0

s0�
3 � xo�

2 xo�yo�

xo�yo� yo�
2 �N�� �d� �11g�

the axial stiffness matrix of the first-order derivative �25� is

�kt2
�e�� =�

�

��N�T�mioVioVio�

s0�
2 ��1 0

0 1
�N���d� �11h�

and the element hydrodynamic excitation vector �25� is

�f�e�	 =�
�

�N�Ts0��CDxo
* �2VcVw + Vw

2 � + CMo
* V̇w −

mioxo�ai

s0�

CDxy1o
* �2VcVw + Vw

2 � −
mioyo�ai

s0�
�d�

�11i�

Please note that the expressions in detail of the coefficients of
added mass mPo+mio+Cao

* , of inertia CMo
* , of drag �CDxo

* ,CDxy1o
* 	,

and of equivalent damping �Ceqxo
* ,Ceqxyo

* ,Ceqyo
* 	, the bending ri-

gidity Bo�o, the current and wave velocities �Vc ,Vw	 are given in
the paper by Chucheepsakul et al. �25�

Assembling the element equations, the global system of finite
element equations can be obtained as

�M��D̈n	 + ��C� + �G���Ḋn	 + �K��Dn	 = �F	 �12�

where

�Dn	 = �
i=1

nelem

�dn� �13a�

�M� = �
i=1

nelem

�m�e�� �13b�

�C� = �
i=1

nelem

�c�e�� �13c�

�G� = �
i=1

nelem

�g�e�� �13d�

�K� = �
i=1

nelem

�k�e�� �13e�

�F� = �
i=1

nelem

�f�e�� �13f�

are the global nodal displacement, the total mass matrix, the total
hydrodynamic damping matrix, the total gyroscopic matrix, the
total stiffness matrix, and the total hydrodynamic excitation vec-
tor, respectively, in which nelem is the number of finite elements.
The second-order model of Eq. �12� has to be transformed to the
first-order model via the state space formulation �26� as

�Ẋn	 = �A��Xn	 + �B	 �14�

where

�Xn	 = �Dn

Vn
� �15a�

�A� = � 0 I

− M−1K − M−1�C + G� , �B	 = � 0

M−1F
�

�15b�

are the state vector of displacement Dn and velocity Vn, the state
transition, and the deterministic input matrices. The initial-value
problem of the highly nonlinear state Eq. �14� in association with
the initial condition equations can be solved to determine the non-
linear responses by the explicit time integration. The drawback to
the explicit methods dealing with the conditionally stable state of
the critical step size of time is overcome by the Gear’s stiff
method that includes the automatically adaptive time-step-size al-
gorithm �27�. This algorithm automatically improves the time-step
size during the integration process so that the absolute error cri-
terion is achieved.

3 Numerical Studies and Results
The basic equilibrium geometries of the riser pipes commonly

found in marine riser operations are concerned with both the
vertical-straight lines and the inclined-catenary curves with top
end offset. The vertical-straight line configuration is mostly set for
static equilibrium of the high strength steel, rigid riser, which is
supplied by a high tension and a mooring system at the top end
support �on a floating vessel�. The inclined catenary is the initial
profile of the composite flexible riser, which allows the top end
excursion and the large displacements of the pipe.

In this section, the effects of internal flow of transported fluid
on both rigid and flexible risers are demonstrated. However, the
rigid riser results are referred to merely to validate the numerical
results, because of its well-known linear behavior under infinitesi-
mal static displacements. The advanced mechanics of the effect of
internal pulsating flow will be studied parametrically through the
flexible riser analysis.

The parameters utilized for the flexible riser analysis are given
in Table 1. Some of them are manipulated into dimensionless
forms for the sake of comprehension in the parametric study of
the effects of pipe’s extensibility and internal flow. For the reason
that the risers as the tensioned pipes are subjected to the large top
tension as compared with the flexural rigidity, it is convenient to
use the applied tension at the top end of the riser Tt as the basis for
the parametric normalization to obtain the following dimension-
less quantities

V̂io = V̄i�m̄i

Tt
�16a�

âio = aio� m̄iL

Tt
� �16b�

V̂ia = Via�m̄i

Tt
�16c�

�̂i = �iL�m̄i

Tt
�16d�

where m̄i is the transported fluid mass per unit undeformed length

of the pipe. The parameters V̂io, âio, V̂ia, and �̂i denote the effects
of the mean flow velocity, the constant-step acceleration, the fluc-
tuation amplitude, and the pulsation frequency of transported
fluid, respectively.

3.1 Validation of Numerical Results. In order to verify the
validity of the present model, the specimen of a vertical produc-
tion riser given by Moe and Chucheepsakul �17� is adopted for the
comparative study. The parameters used in the calculation are
shown in Table 1. The natural frequency of the rigid production
riser tends to decrease along with the elevation of internal flow
speed, as shown in Table 2. For the inextensible analysis exclud-
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ing bending rigidity of the pipe, the analytical solution �17� based
upon using the first term of an asymptotic series for the Bessel
functions yields the expression of the natural frequency of the
riser as

�n =
n�

2L

��Te
yo=ȳt
− miV̄i

2 + �Te
yo=0 − miV̄i
2�

�mP + mi + Ca
*

�17�

in which n is the mode number; L the span length of the riser;
Te=T+ peAe− piAi the effective tension; mP and mi the masses of
pipe and transported fluid; Ca

*=	eAeCa the added mass of external

fluid; and V̄i the constant mean flow velocity of a fully developed

flow. The analytical results computed from Eq. �17� are shown in
Table 2 as well as the numerical solutions using 20-finite elements
�17�.

The extensible analysis is also carried out using 20-finite ele-
ments. In Table 2, it is shown that the results of the extensible
analysis �EA� converge nearly to the inextensible analysis �IA�
results, and thus indicate that the effect of the pipe’s extensibility
is quite low for the rigid production riser. The finite element so-

lutions for the step increments of the internal flow velocity V̄i

reveal that the fundamental mode of divergence instability reaches

the critical velocity V̄i�cr�=38.2 m/s, which yields the negative
combined tension at the bottom portion of the riser. In the case
where the bending rigidity �B� of the pipe is taken into account in
the analysis, the natural frequency of the pipe augments signifi-
cantly, and the first mode instability takes place at the higher

critical flow speed such as V̄i�cr�=64 m/s. These results are under-
standable, showing that bending rigidity contributes the bending
stiffness to the system, and therefore enhances the stability criteria
of the system.

Figure 2 plots the natural frequencies of the rigid production
riser under various internal flow velocities. It is noticed that the
shapes of modal vibrations should modify the curvature mode
after the critical internal flow velocity. For example, prior to the

critical velocity �V̄i=0–63 m/s�, the fundamental mode of the
transverse vibration un holds the explicit single-curvature mode
shape. When the critical velocity 64 m/s is approached, the single
curvature develops to the implicit double curvature, and maybe
bifurcates onto the explicit double curvature mode shape in the
second vibration mode.

From V̄i=65 m/s to 83 m/s, the divergent instability over-
whelms the single curvature mode, and the double curvature mode
occupies the fundamental mode instead. The second bifurcation
occurs at the second critical velocity 84 m/s in the same manner
that the vibration tends to bifurcate from the double curvature

Table 1 Input parameters of the marine riser specimens

Parameter
Production

risers
Flexible

risers

Elastic modulus E �N /m2� 0.207
1012 0.207
1012

External diameter of the pipe D̄e �m� 0.26 0.26

Internal diameter of the pipe D̄i �m� 0.20 0.20

Density of pipe material 	P �kg /m3� 7850 7850
Density of external fluid 	e �kg /m3� 1025 1025
Density of internal fluid 	i�kg /m3� 998 998
Poisson’s ratio � 0.50 0.50
Static offset of the vessel x̄t �m� 0 70

Vertical depth of risers ȳt �m� 300 300

Height of the bottom support over seabed ȳb �m� �0 �0
Applied top tension Tt �N� 476,200 �basis�a

Normal drag coefficient CDn
0.70 0.70

Tangential drag coefficient CDt
0.03 0.03

Current velocity at mean sea level Vct �m/s� 0 0.20

Internal flow velocity V̄i �m/s� 0.00 �nondim.�b

Added mass coefficient Ca
1.00 1.00

Wave amplitude �a �m� 6 6
Wave frequency �w �rad/sec� 0.6 0.6
Wave number k 0.03 0.03
Linear acceleration of int. flow aio �m/s� 0 �nondim.�b

Wave velocity amplitude of int. flow Via �m/s� 0 �nondim.�b

Internal flow frequency �i �rad/sec� 0 �nondim.�b

aBasis denotes the basic dimension used for the parametric normalization to obtain the dimensionless quantities.
bNondim denotes the nondimensional quantity to be varied for the parametric study.

Table 2 The fundamental natural frequencies �1 „rad/s… of the
vertical production riser conveying fluid with various speeds of
internal flow V̄i „m/s…a

Moe and Chucheepsakulb

�IA, EBR�
This study �20-finite elements�

�EA�

V̄i
�m/s�

Analytical
solution

Numerical
solution EBR IBR

0 0.2878 0.2890 0.2891 0.3001
5 — — 0.2881 0.2994
10 0.2838 0.2853 0.2853 0.2972
15 — — 0.2804 0.2934
20 0.2706 0.2730 0.2731 0.2880
25 — — 0.2627 0.2809
30 0.2413 0.2478 0.2478 0.2717
35 — — 0.2224 0.2603
38 �unstable� 0.1704 0.1710 0.2522
40 — �unstable� �unstable� 0.2461
45 — — — 0.2282
50 — — — 0.2052
55 — — — 0.1738
60 — — — 0.1250
65 — — — �unstable�

aIA�inextensible analysis; EA�extensible analysis; EBR�excluding bending rigid-
ity; IBR�including bending rigidity.
bSee Ref. �17�.
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mode to the triple curvature mode, which will become the next
fundamental vibrational mode instead. The summary of alterations
of the curvature modes against the critical state for each vibration
mode is given in Table 3.

3.2 The Effects of the Mean Flow Velocity of Transported
Fluid. In Fig. 3, it is clearly seen that the steady flow of trans-
ported fluid expands the amplitudes of nonlinear vibrations of the
riser. On the phase planes in Fig. 3�c�, the steady internal flow
also induces the small increase of the orbit difference of the tra-
jectory to reduce the orbital stability of the pipe motion. The os-
cillation phase is slightly shifted by the steady internal flow as
shown in the time history in Fig. 3�d�. It agrees with the analytical

Fig. 2 The effect of fluid transportation rate on natural frequencies and mode shapes of the
vertical production risers

Table 3 Summary of alterations of the curvature modes ver-
sus the critical state

The curvature modes �counted by the number of explicit
curvatures� for

Vio= V̄i
�m/s�

The first
vibrational

mode

The 2nd
vibrational

mode

The third
vibrational

mode

The fourth
vibrational

mode

0–63 1 2 3 4
64 1–2 2–3 3–4 4–5

65–83 2 3 4 5
84 2–3 3–4 4–5 5–6
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proof by Moe and Chucheepsakul �17� that the oscillation phase
of the riser could be shifted by the Coriolis effect of internal flow

2	iAiV̄i.
Since the steady internal flow provides loading to the system by

the Coriolis and the centrifugal effects as manifested in Eqs. �11c�,
�11g�, and �11h�, the steady internal flow effect enlarges the trans-
verse and longitudinal dynamic displacements as shown in Figs.
4�a� and 4�b�. The equivalent of the centrifugal force of the steady
internal flow to the compressive internal force −mioVio

2 in Eq.
�11g� reveals that the steady internal flow reduces the dynamic
tension of the riser, and contribute the secondary effect on increas-
ing bending moment as shown in Figs. 4�c� and 4�d�, respectively.

3.3 The Effects of the Step Acceleration of Transported
Fluid. Practically, the acceleration of internal flow should be in-
putted into the transporting system to improve a level of transpor-
tation rate in some operation periods whether while starting or
during pumping process. Consider the internal flow acceleration
Eq. �2� corresponding to the assumption �j�. The internal flow rate
could be modified by the adjustments of the following:

1. The constant rates of flow acceleration âio;
2. The fluctuation amplitude V̂ia; and
3. The pulsatile frequency �̂i of the flow pulsation.

Fig. 3 The effect of the mean flow velocity of transported fluid V̂io on „a…; „b… phase spaces; „c…
phase planes; „d… time histories of the dynamic normal displacement un of the flexible riser at
yo=150 m for âio=0, V̂ia=0.0406, and �̂i=1.25
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In this section, the improvement of the internal flow rate by
adapting �a� the constant acceleration rates is examined in the
condition where the fluctuation amplitude and frequency of the
pulsatile flow are nontrivial and invariable. The other ways of the
flow-rate improvement such as �b� and �c� will be studied subse-
quently. Although a constant input step of the acceleration is to
represent a linear change of the internal flow velocity, their mul-

tisteps in the appropriate multiple rise-time intervals may approxi-
mately converge to the linear or nonlinear acceleration effects.

To perceive the results obviously, Figs. 5�c� and 5�d� demon-
strate the numerical results under the three steps of the internal
flow acceleration. First the riser conveys fluid with the zero step
acceleration: âio=0, in association with the constant pulsatile per-

Fig. 4 The effect of the mean flow velocity of transported fluid V̂io on envelopes of: „a… the
dynamic normal displacement un; „b… the dynamic tangential displacement vn; „c… the axial
force T; and „d… the bending moment M for âio=0, V̂ia=0.0406, �̂i=1.25
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turbations due to V̂ia=0.0406 and �̂i=1.25. It is discovered that
the riser oscillation develops to travel obitally around the equilib-
rium point �un=0.2 m, u̇n=0 m/s� as seen on the phase plane in
Fig. 5�c�.

Anytime afterward, if the transportation rate is improved by the
linear change of the internal flow velocity such as by increasing
from âio=0 to âio=0.507 or to âio=1.014, the impulsive effect
will overshoot the riser oscillation traveling to the new orbits of

Fig. 5 The effect of the constant step acceleration of transported fluid âio on „a…; „b… phase spaces; „c… phase
planes; and „d… time histories of the dynamic normal displacement un of the flexible riser at yo=150 m for
V̂io=0, V̂ia=0.0406, �̂i=1.25
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the equilibrium points �un=−1.2 m, u̇n=0 m/s� or �un=−2.6 m,
u̇n=0 m/s�, respectively.

Whenever, the upgrade of transportation rate is satisfactory
enough, the current internal flow velocity will be maintained
steadily, and thus the acceleration âio will suddenly return to zero
again. As a result, the riser motion will travel back to the original
orbit around the equilibrium point �un=0.2 m, u̇n=0 m/s�.

The multistep alterations of the transportation rate could be
explained in the same way. If the internal flow speed is twice-
stepped accelerated: from âio=0 to âio=0.507 and then from âio
=0.507 to âio=1.014, the trajectory and the time history of the
riser vibration under âio=0 will be first overshot to the others
under âio=0.507, and then second overshot to the others under
âio=1.014 at the impulsive times as shown in Figs. 5�c� and 5�d�.
The deceleration of the internal flow speed should yield the con-
trary impulses to skip the trajectory and the time history back to
the current condition of âio.

In conclusion, the constant step of the internal flow acceleration
undertakes a small effect on the oscillation amplitudes, but dras-
tically disturbs the static equilibrium locations of oscillations. As
shown on the phase planes and phase spaces in Figs. 5�a�–5�c�,
although the initial conditions are identical, the pipes with and
without the step acceleration âio have the different positions of the
static equilibrium. The internal flow acceleration âio removes the
beating orbits far away from the initial condition, but still main-
tains the stability of motion by some increase of the limit cycle
size.

Consider the impulsive effect from Eqs. �2� and �11i�. The
negative tangential inertial forces due to the constant step of the
internal flow acceleration âio

�f�e�	 =�
�

�N�T�− mioxo�aio

− mioyo�aio
�d� �18�

which could be considered as an ideal step input, is applied in-
stantaneously at the initial condition.

As a result, the static displacement position is shifted from the
displacement levels un=0.2–−1.2 m and to un=−2.6 m, and there
is the slight overshooting of oscillation about the static equilib-
rium position, as shown in Fig. 5�d�. The shifting of the static
equilibrium position and the small overshoot of the oscillation
increases the large displacements in the transverse and the longi-
tudinal directions, the maximum dynamic tension, and the bend-
ing moment of the riser as shown in Figs. 6�a�–6�d�, respectively.

3.4 The Effects of the Fluctuation Amplitude of Trans-
ported Fluid. Consider Eqs. �2� and �11i� to recognize the me-
chanics of the harmonically perturbed flow. The harmonic pulsa-
tile flow components generate the positive tangential excitation
forces

�f�e�	 =�
�

�N�T�mioxo��Via�i sin �it�
mioyo��Via�i sin �it�

�d� �19�

It is clearly seen that the fluctuation amplitude Via joins a part of
the harmonic excitation amplitude of internal flow. Therefore, it
does the external virtual work to yield an increase of the oscilla-
tion amplitudes in both horizontal and vertical directions as shown
in Figs. 7�a�–7�d�, 8�a�, and 8�b�.

The larger fluctuation amplitude would expand the sizes of limit
cycle and beating amplitude, but lower the frequency of the riser
oscillation. The extension of orbital motion degrades the closeness
of the neighborhood limit cycles; as a result the stability of pipe
motion is decayed based upon the orbital stability in the sense of
Poincaré �28�.

The fluctuation amplitude amplifies significantly the transverse
motion and the dynamic tension in the upper region of the pipe, as
shown in Figs. 8�a� and 8�c�. It also expands the longitudinal

displacements and the bending moment in the largely sagged por-
tion of the pipe, where the greater curvature of pipe bending is
developed, as shown in Figs. 8�b� and 8�d�.

3.5 The Effects of the Pulsation Frequency of Transported
Fluid. Consider Eq. �19�. It is seen that the pulsatile frequency of
the internal flow �i affects nonlinearly both the amplitude and the
frequency of the excitation forces. Since, the variation of the pul-
satile frequency may induce a type of instability such as paramet-
ric resonances of the riser oscillation, it is unnecessary for the
pulsatile frequency to always expand the oscillation amplitude of
the riser akin to the effect of the fluctuation amplitude of the
internal flow.

As demonstrated in Figs. 9 and 10, the increase of pulsation
frequency from 1.25 to 12.50 could provide the complex limit
cycle associated with the subharmonic responses of the pipe’s
velocity, as shown in Figs. 9�a�–9�c�. The alteration of the pulsa-
tion frequency eliminates the occurrence of beat phenomenon to
become the steady-state response, as shown in Fig. 9�d�. Conse-
quently, the orbit of trajectory is reduced, and the stability of
transverse motion of the pipe is revitalized, as shown in Fig. 9�c�.

After the close to resonance vanishes, the maximum transversal
oscillation reduces to occupy a magnitude at the steady state. Nev-
ertheless, this usually does not mean that the pulsation frequency
would reduce the pipe’s responses. In fact if the resonance or
beating is not involved, the pulsation frequency will take some
effect on increasing the response frequency and the transverse
vibration of the pipe according to Eq. �19�. The additional case is
studied by setting the pulsation frequency as 6.25, and it is found
that there is no substantial difference between the time histories
for �̂i=6.25 and for �̂i=12.50. More noticeably, the pulsation
frequency would increase the longitudinal response, the dynamic
tension, and the bending moment, as shown in Figs. 10�a�–10�d�.
Therefore, the stiffer axial and bending strength would be required
in the pipe design to resist the excitation of the higher pulsation
frequency.

4 Concluding Remarks
The mean flow velocity of transported fluid increases various

responses, and reduces the stability of motion of the pipe. The
constant step acceleration of internal flow does shift the static
equilibrium position of the pipe to gain large displacement behav-
ior and the extension of internal forces. The harmonic excitations
of the pulsatile internal flow produced by the fluctuation ampli-
tude have a similar influence on the effect of steady flow velocity,
but the wave characteristic of the flow velocity has an extraordi-
nary effect on the dynamic tension. The pulsatile frequency also
affects the oscillation behavior of the pipe. The phenomena of
beating, resonance, and steady-state vibrations may be disturbed,
depending upon the variation of the pulsation frequency, which
induces modification of the subharmonic frequency of the pipe
velocity.
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Appendix: Determination of the True Wall Tension
The true wall tension T is the actual stress used in the design of

the riser pipe section. Hence, It is useful to manipulate Eq. �6� to
determine its expression such that

T = EAP0� − 2��peAe0 − piAi0� �A1�

where the axial strain � is solved from Eq. �4�.
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The pressure forces of internal and external fluids piAio and
peAeo may be rendered from the tangential equilibrium conditions
of the transported fluid and pipe as follows �25�

�piAio�� = ws� − �miog cos � + mioaFt�s� �A2�

�T + Ttri + peAe�� = ws� − Q�� − �fHt − �mP − me�g cos �

− mPaPt�s� �A3�

where w is the wall-shear friction; aFt the tangential acceleration
of the transported fluid �25�; Ttri=EAP�tri= �2�−1��peAeo− piAio�
is the tension induced by triaxial pressures �25�; Q is the shear

Fig. 6 The effect of the constant step acceleration of transported fluid âio on envelopes of: „a…
the dynamic normal displacement un; „b… the dynamic tangential displacement vn; „c… the axial
force T; and „d… the bending moment M for V̂io=0, V̂ia=0.0406, and �̂i=1.25
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force; and aPt is the tangential acceleration of the pipe. The three
variables: T, pe, and pi could be determined by solving the system
of three Eqs. �A1�–�A3�.

Denoting

total internal fluid pressure pi = static pressure pis

+ dynamic pressure pid �A4�
and

Fig. 7 The effect of the fluctuation amplitude of transported fluid V̂ia on: „a…; „b… phase spaces; „c… phase
planes; „d… time histories of the dynamic normal displacement un of the flexible riser at yo=150 m for V̂io=0,
âio=0, and �̂i=1.25
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total external fluid pressure pe = static pressure pes

+ dynamic pressure ped

�A5�
decompositions of Eqs. �A2� and �A3� between the static and
dynamic states of fluids yield

�pisAio�� = − �miog cos ��s� �A6a�

�pidAio�� = ws� − �mioaFt�s� �A6b�

�pesAeo�� = − �meo g cos ��s� �A7a�

�pedAed�� = ws� − Q�� − �fHt − mPg cos � − mPaPt�s� − �T + Ttri��
�A7b�

Fig. 8 The effect of the fluctuation amplitude of transported fluid V̂ia on envelopes of: „a… the
dynamic normal displacement un; „b… the dynamic tangential displacement vn; „c… the axial
force T; and „d… the bending moment M for V̂io=0, âio=0, and �̂i=1.25
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As well known in the subjects of fluid mechanics, Eqs. �A6a�
and �A7a� give the classical solutions of the static fluid pressures
pis��� and pes��� such that

pis = miog�ȳt − y� �A8a�

pes = meog�ȳt − y� �A8b�

The excitation functions of the dynamic pressures pid�� , t� and
ped�� , t� to induce the other dynamic tension effect may be solved
based upon the system of Eqs. �A1�, �A6b�, and �A7b�. However,

Fig. 9 The effect of the pulsation frequency of transported fluid �̂i on „a…; „b… phase spaces; „c… phase planes;
„d… time histories of the dynamic normal displacement un of the flexible riser at yo=150 m for V̂io=0, âio=0,
V̂ia=0.0406
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it is quite cumbersome to recognize the exact value of the wall-
shear friction w, which varies upon various kinds of factors such
as Reynolds’ number, fluid density, fluid velocity, flow type, etc.
The experimental information may be necessary to evaluate the
mean value of the wall-shear friction in numerous situations.
Thus, the effect of dynamic pressure fields of fluid flows on the
dynamic true wall tension is neglected herein and still left as a
future research question.
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The Eshelby Tensors in a Finite
Spherical Domain—Part I:
Theoretical Formulations
This work is concerned with the precise characterization of the elastic fields due to a
spherical inclusion embedded within a spherical representative volume element (RVE).
The RVE is considered having finite size, with either a prescribed uniform displacement
or a prescribed uniform traction boundary condition. Based on symmetry and group
theoretic arguments, we identify that the Eshelby tensor for a spherical inclusion admits
a unique decomposition, which we coin the “radial transversely isotropic tensor.” Based
on this notion, a novel solution procedure is presented to solve the resulting Fredholm
type integral equations. By using this technique, exact and closed form solutions have
been obtained for the elastic disturbance fields. In the solution two new tensors appear,
which are termed the Dirichlet–Eshelby tensor and the Neumann–Eshelby tensor. In
contrast to the classical Eshelby tensor they both are position dependent and contain
information about the boundary condition of the RVE as well as the volume fraction of
the inclusion. The new finite Eshelby tensors have far-reaching consequences in applica-
tions such as nanotechnology, homogenization theory of composite materials, and defects
mechanics. �DOI: 10.1115/1.2711227�

1 Introduction
One of the corner stones of contemporary micromechanics and

nanomechanics is Eshelby’s inclusion theory �1–3�. Eshelby’s el-
lipsoidal inclusion solution was obtained based on the assumption
that an inclusion is embedded in unbounded ambient space. This
is a good approximation if the size effect of the inclusion is neg-
ligible, i.e., the size of the inclusion is small compared to the size
of the representative volume element. In engineering applications,
the size of the representative volume element �RVE� is finite.
Therefore, certain approximations have to be made in order to
utilize Eshelby’s classical solution in homogenization. This limi-
tation becomes obvious, when size effects and interfacial bound-
ary effects of a second phase in a composite, or the size effect and
boundary effects of an inhomogeneity, become prominent issues,
which is one of main focuses of the nanocomposite mechanics and
materials, e.g., Refs. �4,5�. Today, there is a call for the solution of
the inclusion problem in a finite domain.

Inclusion problems in a finite domain have been considered
before, e.g., Refs. �6–9�. A common approach adopted is to first
find the Green’s function of Navier’s equation for a finite domain,
and then to find the solution of the corresponding inclusion prob-
lem. However, attempts based on this approach have been futile,
we believe, because of the mathematical difficulties involved in
obtaining a closed form solution of the finite Green’s function.
This is true even for a highly symmetrical spherical domain. In
fact, the Green’s function of Navier’s equation for a finite spheri-
cal domain has not been found yet. To the best of the authors’
knowledge, there has never been any exact, closed form solution
of the inclusion problem in a finite domain published in the litera-
ture. A solution has been obtained by Luo and Weng �10�, which
coincides with our solution in a special case. Their solution, how-
ever, is not in closed form and lacks expressions for the Eshelby
tensors.

In this paper, which is the first part of a series, we present the

exact solution of the finite Eshelby tensors of a spherical inclusion
embedded concentrically within a finite spherical RVE. The fol-
lowing section illustrates the two boundary value problems
�BVPs� we are considering and their resulting integral equations.
In Sec. 3 the notion of a transversely isotropic tensor is discussed,
which is used in Sec. 4 to solve the two integral equations. Section
5 concludes this part. The Eshelby tensors derived in this paper
have some profound consequences for both homogenization and
the study of inhomogeneities in finite elastic solids. In the second
part of this work, applications to homogenization of composites
are discussed �11�.

2 The Inclusion Problem
We consider Eshelby’s homogeneous inclusion problem in a

finite domain. Figure 1 shows a spherical inclusion �I with radius
a embedded at the center of a spherical representative volume
element � with radius A. Consider two arbitrary points x��, y
��, and let r=y−x. Each vector x, y, r can be expressed as its
length multiplied by a unit direction vector. We shall denote them
as x= �x�x̄, y= �y�ȳ and r=rr̄, with r= �r�. Note that if y��� we
have �y�=A and ȳ=n, i.e., the direction of y is equal to the out-
ward surface normal n. Furthermore we define the ratios �
=a / �x�, �0=a /A and t= �x� /A=�0 /� to allow for a nondimensional
description. Suppose that a constant eigenstrain field is prescribed
inside the inclusion

�ij
* �x� = ��ij

* , x � �I

0, x � �E = �/�I
� �1�

The infinitesimal elastic strain equals the total strain subtracting
the eigenstrain

eij = �ij − �ij
*

with

�ij = 1
2 �ui,j + uj,i� �2�

where ui,j denotes the spatial differentiation �ui /�xj. We assume
that the RVE is a linear elastic medium, i.e.,
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�ij = Cijk�ek�, ∀ x � � �3�

where �ij are the components of the Cauchy stress tensor, and
Cijk� is the elasticity tensor.

On the boundary of the RVE, two types of boundary conditions
�BC�, a prescribed displacement �Dirichlet� or a prescribed trac-
tion �Neumann� boundary condition, are considered

Dirichlet BC

ui = �ij
0 xj, ∀ x � �� �4�

Neumann BC

ti = �ij
0 nj, ∀ x � �� �5�

where �ij
0 and �ij

0 are the background strain and stress fields. The
elastic fields inside the RVE can be decomposed into the back-
ground field from the remote boundary loads and a disturbance
field, which arises due to the presence of the inclusion. Thus the
displacement and traction can be written as

ui = ui
0 + ui

d, ti = ti
0 + ti

d �6�
so that we obtain the following two homogeneous boundary con-
ditions

Dirichlet BC

ui
d = 0, ∀ x � �� �7�

Neumann BC

ti
d = 0, ∀ x � �� �8�

for the disturbance fields. The solution for the background field
depends on the macro problem. Here we are concerned with the
solution of the disturbance fields. Considering the equilibrium
equations � ji,j

d =0, we obtain either the Dirichlet–Eshelby BVP

Cijk�uk,�j
d �x� − Cijk��k�,j

* �x� = 0, ∀ x � �

ui
d�x� = 0, ∀ x � �� �9�

or the Neumann–Eshelby BVP

Cijk�uk,�j
d �x� − Cijk��k�,j

* �x� = 0, ∀ x � �

ti
d�x� = njCijk�uk,�

d �x� = 0, ∀ x � �� �10�

Let us denote the Green’s function, Gmi
� �x−y�, as the solution of

the following Navier’s equation in unbounded space

Cijk�Gmk,�j
� �x − y� + �mi��x − y� = 0, ∀ x,y � R3, i = 1,2,3

�11�

For an isotropic linear elastic space, the Green’s function is �e.g.,
Ref. �12��

Gij
��x − y� =

1

16�	�1 − 
�� �xi − yi��xi − yi�
r3 + �3 − 4
�

�ij

r
	

�12�

where r=
�xi−yi��xi−yi�; 	 is the shear modulus; and 
 is Pois-
son’s ratio. By using Somigliana’s identity �12�, the displacement
field solution of BVPs Eqs. �9� and �10� may be expressed as

um
d �x� = −�

�

Cijk�Gim,j
� �x − y��k�

* �y�d�y

+�
��

Cijk�uk,�
d �y�Gim

� �x − y�nj�y�dSy

+�
��

Cijk�uk
d�y�Gim,j

� �x − y�n��y�dSy �13�

where we have denoted Gim,j
�

ª�Gim
� /�xj =−�Gim

� /�yj. For the
Dirichlet–Eshelby problem, this integral equation becomes

um
d �x� = −�

�

Cijk�Gim,j
� �x − y��k�

* �y�d�y

+�
��

Cijk�uk,�
d �y�Gim

� �x − y�nj�y�dSy �14�

and for the Neumann–Eshelby problem, Eq. �13� reduces to

um
d �x� = −�

�

Cijk�Gim,j
� �x − y��k�

* �y�d�y

+�
��

Cijk�uk
d�y�Gim,j

� �x − y�n��y�dSy �15�

In case of the Dirichlet–Eshelby BVP, the disturbance strain field
follows from the displacement Eq. �14� as

�ij
d �x� = −

1

2
�mn

* �
�I

Ck�mn�Gki,�j
� �x − y� + Gkj,�i

� �x − y��d�y

+
1

2�
��

Ck�pq�pq
d �y��Gki,j

� �x − y� + Gkj,i
� �x − y��n��y�dSy

�16�

For the Dirichlet–Eshelby BVP we solve Eq. �16� which is an
integral equation for the unknown strain field �ij

d . In case of the
Neumann–Eshelby BVP we can directly solve Eq. �15� which is
an integral equation for the unknown displacement field ui

d. In
passing, we note that Eq. �16� becomes a hypersingular integral
equation if x���.

To illustrate our solution procedure, we re-examine the classical
Eshelby tensors. For inclusion problems in unbounded space, the
boundary term in Eqs. �14�–�16� drops out. One can then find the
disturbance strain fields in terms of the Eshelby tensors �1,2�,

�ij
d �x� = Sijk�

·,� �x��k�
* , ∀ x � R3 �17�

where the superscript · represents the interior solution �·= I� or the
exterior solution �·=E�, depending on the location of x, i.e.,

Sijk�
·,� �x� = �Sijk�

I,� �x� , ∀x � �I

Sijk�
E,��x� , ∀x � R3/�I

� �18�

Fig. 1 A spherical representative element containing a spheri-
cal inclusion
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For spherical inclusions in an infinite elastic medium, the Es-
helby tensors have the elementary form �e.g., Refs. �13,14�

1. Interior solution

Sijmn
I,� �x� =

�5
 − 1�
15�1 − 
�

�ij�mn +
�4 − 5
�
15�1 − 
�

��im� jn + �in� jm�, x � �I

�19�
2. Exterior solution

Sijmn
E,� �x� =

�3

30�1 − 
�
��3�2 + 10
 − 5��ij�mn + �3�2 − 10
 + 5�

���im� jn + �in� jm� + 15�1 − �2��ijx̄mx̄n + 15�1 − 2


− �2��mnx̄ix̄j + 15�
 − �2���imx̄jx̄n + � jmx̄ix̄n + �inx̄jx̄m

+ � jnx̄ix̄m� + 15�7�2 − 5�x̄ix̄ jx̄mx̄n�, x � R3/�I �20�

where �ªa / �x� and �x�=
xixi , i=1,2 ,3.
Inspired by Eq. �17�, we postulate the following form of the

two considered BVPs

�ij
d �x� = Sijk�

·,� �x��k�
* , ∀ x � � �21�

where Sijk�
·,� �x� is an unknown fourth-order tensor �the finite Es-

helby tensor�, we are seeking to obtain. As before the superscript
· represents the interior solution �·= I� or the exterior solution
�·=E�. The superscript � stands for the Dirichlet–Eshelby tensor
��=D� or the Neumann–Eshelby tensor ��=N�. As a special case
we expect to obtain the original infinite Eshelby tensor ��=��.

In principle, one may be able to use spherical harmonics to
represent the general solution of Eqs. �14� and �15� based on
symmetry, but the solution procedure is very much involved. In
fact, no explicit solution has been found as shown in a particular
case worked out by Luo and Weng �10�.

3 The Radial Isotropic Tensor
To solve Eqs. �14� and �15�, we first introduce a novel concept

of the radial transversely isotropic tensor, or in short, the radial
isotropic tensor.

It may be observed from the expressions of Sijmn
I,� �x� and

Sijmn
E,� �x� above that there appear six independent tensorial bases,

which can be arranged in an array as follows

�ijmn�x̄� ª �
�ij�mn

�im� jn + �in� jm

�ijx̄mx̄n

�mnx̄ix̄j

�imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n + � jnx̄ix̄m

x̄ix̄jx̄mx̄n

 �22�

We term this array as the circumference basis of the Eshelby
tensor. By using �ijmn�x̄�, both the original interior and exterior
Eshelby tensor can be recast into a canonical form, the dot product
of two arrays, i.e.,

Sijmn
·,� �x� = S1

·,��t��ij�mn + S2
·,��t���im� jn + �in� jm� + S3

·,��t��ijx̄mx̄n

+ S4
·,��t��mnx̄ix̄j + S5

·,��t���imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n

+ � jnx̄ix̄m� + S6
·,��t�x̄ix̄ jx̄mx̄n

= �ijmn
T �x̄�S·,��t� . �23�

The arrays, SI,��t� and SE,��t�, are termed the radial basis of the
infinite Eshelby tensor. In accordance to Eqs. �19� and �20� they
are given as

SI,��t� =
1

15�1 − 
��
5
 − 1

4 − 5


0

0

0

0

 ,

SE,��t� =
�0

3/t3

30�1 − 
��
3�0

2/t2 + 10
 − 5

3�0
2/t2 − 10
 + 5

15�1 − �0
2/t2�

15�1 − 2
 − �0
2/t2�

15�
 − �0
2/t2�

15�7�0
2/t2 − 5�

 �24�

where t= �x� /A=�0 /�, with �=a / �x�, and �0=a /A.
The above heuristic discussion reveals an important fact, that

the Eshelby tensor is a so-called “radial isotropic tensor,” which is
a generalization of an isotropic tensor. Here, we define the radial
isotropic tensor as a transversely isotropic tensor along a given
radial direction, i.e., a tensor whose properties in all directions
perpendicular to the radial direction, x̄, are the same. In general,
the radial isotropic tensor, depending on x= tAx̄, can be expressed
in the following canonical form

Sijmn�x� = S1�t��ij�mn + S2�t���im� jn + �in� jm� + S3�t��ijx̄mx̄n

+ S4�t��mnx̄ix̄j + S5�t���imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n

+ � jnx̄ix̄m� + S6�t�x̄ix̄ jx̄mx̄n

= �ijmn
T �x̄�S�t� �25�

This canonical form decomposes Sijmn into the circumference ba-
sis �ijmn, which is only a function of the direction vector x̄, and
into the radial basis S, which is only a function of the dimension-
less radial distance t.

It is well known that a transversely isotropic tensor has the
similar symmetric properties �e.g., Ref. �15��. Using the definition

aij ª �ij − rirj �26�

bij ª rirj �27�
which are the idempotent parts of a second-order unit tensor,

�ij = aij + bij �28�
one can show that the following six bases �15�

Eijmn
1 = 1

2aijamn �29�

Eijmn
2 = bijbmn = rirjrmrn �30�

Eijmn
3 = 1

2 �aimajn + ajmain − aijamn� �31�

Eijmn
4 = 1

2 �aimbjn + ajnbjm + ajnbim + ajmbin� �32�

Eijmn
5 = aijbmn �33�

Eijmn
6 = bijamn �34�

form a finite non-Abelian group. Furthermore

Ep:Eq = Ep if p = q, Ep:Eq = 0 if p � q, p,q = 1,2,3,4

�35�

where Ep=Eijmn
p ei � e j � em � en. Subsequently, for p

=1,2 ,3 ,4 ,5 ,6, one can find the “less congenial multiplication
table” shown in Ref. �15�.

Nevertheless, to the best of the authors’ knowledge, we are the
first to show that the circumference basis �ijmn of a spherical
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inclusion in a finite domain is a transversely isotropic tensor.2

Instead of using the partially idempotent canonical form to repre-
sent the circumference basis �ijmn of a radial transversely isotro-
pic tensor, we use an equivalent but different description intro-
duced in Eq. �22�.

Based on the symmetry of the problem, we now postulate that
the Eshelby tensor for a finite RVE, Sijmn

·,� , should also be a radial
isotropic tensor. It therefore admits the following multiplicative
decomposition

Sijmn
·,� �x� = �ijmn

T �x̄�S·,��t� �36�

with the superscripts, ·= I or E and �=D or N. Here �ijmn�x̄� is
the circumference basis according to Eq. �22� and S·,��t� is the
radial basis given as

S·,��t� = �S1
·,��t�,S2

·,��t�,S3
·,��t�,S4

·,��t�,S5
·,��t�,S6

·,��t��T �37�

The scalar entries SJ
·,��t�, J=1,2 ,3 ,4 ,5 ,6, are unknown functions

of the nondimensional radial variable t= �x� /A, which are to be
determined.

The postulate above is motivated by the following two consid-
erations. Due to the concentric and spherical symmetry of inclu-
sion and RVE the tensorial basis of the finite Eshelby tensor can
only depend on the radial direction vector x̄i �and the second-order
identity �ij�. Therefore its tensorial basis, can only consist of com-
binations of zeroth-, second-, and fourth-order homogeneous
functions of x̄. Furthermore due to the symmetry of the strain
tensor the finite Eshelby tensor must have minor symmetries. Its
tensorial basis can therefore only admit the six tensorial bases
listed in �ijmn�x̄�. We note that one should expect more than six
bases for problems described by more that one vector, such as
ellipsoidal inclusions or non-concentrically placed inclusions
within the RVE. Such problems may also be solvable with a simi-
lar procedure to ours. Due to the postulate the search for the finite
Eshelby tensors reduces to the search for their radial basis S·,��t�.
We will see in the subsequent section, that the two solutions we
obtain satisfy the governing equations exactly, thereby justifying
postulate Eq. �36�.

In analogy to Eq. �21�, we can express the disturbance displace-
ment field as

ui
d�x� = �Uimn

I,� �x��mn
* , ∀x � �I

Uimn
E,��x��mn

* , ∀x � �E
� �38�

where Uimn
I,� �x� is a third-order radial isotropic tensor, whose rela-

tion to Sijmn
I,� �x� is discussed next. The disturbance strain is linked

to the displacement field by the relation

�ij
d �x� = 1

2 �ui,j
d �x� + uj,i

d �x�� = 1
2 �Uimn,j

·,� �x� + U jmn,i
·,� �x���mn

*

= Sijmn
·,� �x��mn

* �39�

It can be shown that Uimn
·,� �x� can only admit the following multi-

plicative decomposition, so that the related Eshelby tensors
Sijmn

I,� �x� are radial isotropic tensors

Uimn
I,� �x� = �imn

T �x̄�UI,��t�, ∀ x � �I �40�

Uimn
E,��x� = �imn

T �x̄�UE,��t�, ∀ x � �E �41�

with the appearing arrays defined as

UI,��t� = �U1
I,��t�

U2
I,��t�

U3
I,��t�

, UE,��t� = �U1
E,��t�

U2
E,��t�

U3
E,��t�


and

�imn�x̄� = � x̄i�mn

x̄m�in + x̄n�im

x̄ix̄mx̄n
 �42�

Here UI,��t� and UE,��t� are the radial basis arrays of the displace-
ment field. �imn�x̄� is the circumference basis array of the dis-
placement field, whose third-order tensorial entries can only be
first- or third-order homogeneous function of x̄. Hence the distur-
bance displacement field has the following canonical form

ui
d�x� = ui

d�x̄,t� = � �mn
* �imn

T �x̄�UI,��t� , ∀x � �I

�mn
* �imn

T �x̄�UE,��t� , ∀x � �E
� �43�

Furthermore, the kinematic relation �39� yields the following dif-
ferential mapping, which uniquely determines the relationship be-
tween the radial basis array of the strain field and the radial basis
array of the displacement field

S·,��t� = D�t�U·,��t� �44�

where D�t� is a differential operator that is defined in matrix form

D�t� =
1

A�
1

t
0 0

0
1

t
0

0 0
1

t

−
1

t
+

d

dt
0 0

0 −
1

2t
+

1

2

d

dt

1

2t

0 0 −
3

t
+

d

dt


6�3

�45�

Likewise, if S is given U can be determined from

U·,��t� = I�t�S·,��t� �46�

where I�t� is the integration operator

I�t� = tA�1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


3�6

�47�

We note that the displacements are only uniquely determinable up
to the rigid body motion, which is set to zero here.

4 Eshelby Tensors for Finite Domains
For simplicity, in the rest of the paper, we term the Eshelby

tensor for a finite domain as the finite Eshelby tensor.

4.1 The Dirichlet–Eshelby Tensor. We first consider the Di-
richlet BVP Eq. �9� in which case �=D. Substituting Eq. �21� into
Eq. �16�, one obtains a tensorial integral equation for the unknown
finite Eshelby tensor

Sijmn
·,D �x� = Sijmn

·,� �x� +
1

2�
��

�Gik,j
� �x − y� + Gjk,i

� �x − y��

�n��y�Ck�pqSpqmn
E,D �y�d�y �48�

This integral equation has two different forms, depending on
whether x is inside or outside the inclusion

Sijmn
I,D �x� = Sijmn

I,� �x� +
1

2�
��

�Gik,j
� �x − y� + Gjk,i

� �x − y��

�n��y�Ck�pqSpqmn
E,D �y�d�y ∀ x � �I �49�

2We first derived the result in a 2004 manuscript that was submitted to Proceed-
ings of Royal Society of London.
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Sijmn
E,D �x� = Sijmn

E,� �x� +
1

2�
��

�Gik,j
� �x − y� + Gjk,i

� �x − y��

�n��y�Ck�pqSpqmn
E,D �y�d�y ∀ x � �E �50�

Since y lies on the boundary, y���, and since y= tAȳ with t=1,
ȳ=n, we can use Eq. �36� to write Sijmn

E,D �y�=�ijmn
T �n�SE,D�1�. The

postulate, that the circumference basis of the Eshelby tensors for a
finite spherical RVE is the same as for the Eshelby tensors in an
infinite domain, is true only if the circumference basis is invariant
under the boundary integral in Eqs. �49� and �50�. This means that
the Dirichlet boundary integral, which we denote by Sijmn

B,D , can be
expressed in terms of the canonical form

Sijmn
B,D �x� =

1

2�
��

Ck�st�Gik,j
� �x − y�

+ Gjk,i
� �x − y��n��y��stmn

T �n�SE,D�1�dSy

=�
��

Gijmn�x,y�dSy = �ijmn
T �x̄�SB,D�t� �51�

Here Gijmn is the integrand of the boundary integral which follows
as

Gijmn�x,y� =
1

2
Ck�st�Gik,j

� �x − y� + Gjk,i
� �x − y��

�n��y��stmn
T �n�SE,D�1�

=
− 1

16��1 − 
�	r2 �T1r̄knk�ij�mn + T1�2
 − 1��r̄inj

+ r̄ jni��mn + T2�r̄mnn + r̄nnm��ij + T2�2
 − 1���imr̄jnn

+ �inr̄jnm + � jmr̄inn + � jnr̄inm� − 3T1r̄ir̄ jr̄knk�mn

+ T3r̄knknmnn�ij − 3T2�r̄ir̄ jr̄mnn + r̄ir̄ jr̄nnm� + T3�2


− 1��r̄injnmnn + r̄ jninmnn� − 3T3r̄ir̄ jr̄knknmnn� �52�

where r̄i= �yi−xi� /r, r= �y−x� and ni�y�=yi / �y� for y���. The
coefficient vector

T = �T1,T2,T3�T �53�

is a stress projection vector �see Sec. 4.3�, which follows as T
=K1SE,D�1� where

K1 = 	�
2 + 2


1 − 2


4


1 − 2

0

2�1 − 
�
1 − 2


0 0

0 2 0 0 2 0

0 0
2 + 2


1 − 2

0

4

1 − 2


2�1 − 
�
1 − 2



�54�

With the aid of the following integrals �see the Appendix�

�I� �
��

1

r2 r̄knk dSy = 4� �55�

�I� �
��

1

r2 r̄inj dSy =
4�

3
�ij �56�

�III� �
��

1

r2 r̄ir̄ jr̄knk dSy =
4�

3
�ij �57�

�IV� �
��

1

r2 r̄knknmnn dSy =
4�

15
�5 − 3t2��mn +

12�

5
t2x̄mx̄n

�58�

�V� �
��

1

r2 r̄ir̄ j�r̄mnn + r̄nnm�dSy =
8�

15
��ij�mn + �im� jn + � jm�in�

�59�

�VI� �
��

1

r2 �r̄inj + r̄ jni�nmnn dSy

=
�

105
��56 − 24t2���ij�mn + �im� jn + � jm�in� + 120t2�ijx̄mx̄n

− 48t2x̄ix̄ j�mn + 36t2��imx̄jx̄n + �inx̄jx̄m

+ � jmx̄ix̄n + � jnx̄ix̄m�� �60�

�VII� �
��

1

r2 r̄ir̄ jr̄knknmnn dSy

=
�

105
��28 − 20t2���ij�mn + �im� jn + � jm�in� + 100t2�ijx̄mx̄n

+ 16t2x̄ix̄ j�mn − 12t2��imx̄jx̄n + �inx̄jx̄m

+ � jmx̄ix̄n + � jnx̄ix̄m�� �61�
we obtain the boundary contribution by explicit integration as

Sijmn
B,D �x� = �ijmn

T �x̄�SB,D�t� �62�

with

SB,D�t� = K2�t�K1SE,D�1�
and

K2�t� =
− 1

420�1 − 
�

��
70�2
 − 1� 28 4
�7 − 3t2�

0 28�5
 − 4� 7�4
 − 5� + 3t2�7 − 4
�
0 0 6t2�10
 − 7�
0 0 − 24
t2

0 0 18
t2

0 0 0


�63�

The integral Eqs. �49� and �50� can then be reduced to a pair of
algebraic evolution equations,

�ijmn
T �x̄�SI,D�t� = �ijmn

T �x̄��SI,��t� + K3�t�SE,D�1�� �64�

�ijmn
T �x̄�SE,D�t� = �ijmn

T �x̄��SE,��t� + K3�t�SE,D�1�� �65�

where K3�t�ªK2�t�K1. The matrix K2�t� maps the effect of the
boundary traction onto the domain of the RVE.

Eliminating the circumference basis from Eqs. �64� and �65�,
we derive the following parametric algebraic equations

SI,D�t� = SI,��t� + K3�t�SE,D�1�, 0 � t  �0 �66�

SE,D�t� = SE,��t� + K3�t�SE,D�1�, �0 � t  1 �67�

Let us assume that SE,D�t� continuously depends on t so that

lim
t→1

SE,D�t� → SE,D�1� �68�

Now let t→1 in Eq. �67�, so that we can obtain SE,D�1� by solving
Eq. �67�, i.e.,
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SE,D�1� = �I − K3�1��−1SE,��1�

= �0
3�

0

0

0

7 − 28
 + 20
2 − 7�1 − 2
��0
2

2�1 − 
��7 − 10
�
10
 − 7�0

2

2��7 − 10
�
7�0

2 − 5

2�1 − 
�

 �69�

The boundary contribution SB,D�t�=K3�t�SE,D�1� then becomes

SB,D�t� = −
�0

3

15�1 − 
��
5
 − 1

4 − 5


0

0

0

0


+

�0
3�1 − �0

2�
20�1 − 
��7 − 10
��

2�7 − 10
t2�
7�5t2 − 3� − 20
t2

− 10t2�7 − 10
�
− 40
t2

30
t2

0

 �70�

With this the considered Dirichlet–Eshelby problem of a spherical

RVE is fully solved. The radial basis arrays of the Dirichlet–
Eshelby tensors is given by

SI,D�t� = SI,��t� + SB,D�t�, 0 � t  �0 �71�

SE,D�t� = SE,��t� + SB,D�t�, �0 � t � 1 �72�

and from Eq. �36� we finally obtain the Dirichlet–Eshelby tensors.
The interior solution is

Sijmn
I,D �x� =

1

1 − 

��5
 − 1

15
�1 − �0

3� +
7 − 10
t2

10�7 − 10
�
�0

3�1 − �0
2�	�ij�mn

+ �4 − 5


15
�1 − �0

3� +
7�5t2 − 3� − 20
t2

20�7 − 10
�
�0

3�1 − �0
2�	

���im� jn + �in� jm� −
t2

2
�0

3�1 − �0
2��ijx̄mx̄n −

2
t2

7 − 10

�3�1

− �0
2��mnx̄ix̄j +

3
t2

2�7 − 10
�
�0

3�1 − �0
2���imx̄jx̄n + �inx̄jx̄m

+ � jmx̄ix̄n + � jnx̄ix̄m�� �73�

and the exterior solution is

Sijmn
E,D �x� =

�0
3

1 − 

��3�0

2/t2 + 10
 − 5

30t3 −
5
 − 1

15
+

7 − 10
t2

10�7 − 10
�
�1 − �0

2�	�ij�mn

+ �3�0
2/t2 − 10
 + 5

30t3 −
4 − 5


15
+

7�5t2 − 3� − 20
t2

20�7 − 10
�
�1 − �0

2�	��im� jn + �in� jm�

− ��0
2/t2 − 1

2t3 +
t2

2
�1 − �0

2�	�ijx̄mx̄n − ��0
2/t2 + 2
 − 1

2t3 +
2
t2

7 − 10

�1 − �0

2�	�mnx̄ix̄j

− ��0
2/t2 − 


2t3 −
3
t2

2�7 − 10
�
�1 − �0

2�	��imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n + � jnx̄ix̄m� +
7�0

2/t2 − 5

2t3 x̄ix̄ jx̄mx̄n� �74�

We can see that both the interior and the exterior Dirichlet Es-
helby tensor are neither constant nor isotropic. The dependency on
the position x is captured by the dependency on x̄ and t. Further-
more, both tensors depend explicitly on the ratio �0 between in-
clusion and RVE. If we let �0→0 we recover the original infinite
Eshelby tensors exactly since the boundary contribution then van-
ishes. To visualize the Dirichlet–Eshelby tensors the profiles of
the components of the radial basis arrays S·,��t�, S·,D�t� and
SB,D�t� are shown in Fig. 2. Here the relative size of the inclusion
is chosen as �0=0.4, so that the volume fraction becomes �0

3

=0.064. Poisson’s ratio of the matrix phase is picked as 
=0.3.
One can clearly observe that the boundary term SB,D, which can
be understood as a correction of Eshelby’s original result, is sub-
stantial. It can also be noted that there is a discontinuity across the
interface between the inclusion and the matrix.

The disturbance displacement field ui
d�x� is now given by Eqs.

�38�, �40�, and �41�, i.e.,

ui
d�x� = �imn

T �x̄�U·,D�t��mn
* , ∀ x � � �75�

where the arrays �imn�x̄�, UI,D�t�, and UE,D�t� follow from Eqs.
�42� and �46�. Applying operator �47� to Eqs. �71�, �72�, �24�, and
�70� we easily obtain

UI,D�t� = UI,��t� + UB,D�t�, 0 � t  �0 �76�

UE,D�t� = UE,��t� + UB,D�t�, �0 � t � 1 �77�

with

UI,��t� =
tA

15�1 − 
��5
 − 1

4 − 5


0
 �78�
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UE,��t� =
�0

3A

30t2�1 − 
��3�0
2/t2 + 10
 − 5

3�0
2/t2 − 10
 + 5

15 − 15�0
2/t2  �79�

and

UB,D�t� = −
�0

3tA

15�1 − 
��5
 − 1

4 − 5


0


+
�0

3�1 − �0
2�tA

20�1 − 
��7 − 10
�� 2�7 − 10
t2�
7�5t2 − 3� − 20
t2

− 10t2�7 − 10
�
 �80�

Here UI,��t� and UE,��t� are the radial basis array of Eshelby’s
classical solution in unbounded space and UB,D�t� is the radial
basis contribution from the Dirichlet boundary of the RVE.

We remark that ui
d given by the equations above satisfies the

Fredholm-type integral equation of the Dirichlet BVP Eq. �14�
exactly. Furthermore it is readily verified that when t=1

UE,D�1� = �0

0

0
 → ui

d�y� = �mn
* �imn

T �n�UE,D�1� = 0, ∀ y � ��

�81�

This confirms that the obtained displacement solution does indeed
satisfy the Dirichlet boundary condition. The coefficients of the
radial bases U·,�, UB,D, and U·,D are displayed in Figs. 3�a�, 3�c�,
and 3�e�, where we have chosen �0=0.4 and 
=0.3. Again, we
observe that the boundary correction is substantial. Further, one
can see that the Dirichlet solution satisfies the zero displacement
boundary condition exactly.

4.2 The Neumann–Eshelby Tensor. The solution of the
Neumann–Eshelby problem �now �=N� is different from the

Fig. 2 The components of the radial basis arrays S·,�, SB,D, and S·,D
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Dirichlet–Eshelby problem tensor; here the solution is based on
the displacement field. For the Neumann BVP Eq. �10�, the dis-
placements on the boundary of the RVE �t=1� are nonzero and
according to Eq. �43� we have

uk
d�y� = �mn

* �kmn
T �n�UE,N�1�, ∀ y � �� �82�

By substituting Eq. �82� into the integral equation corresponding
to the Neumann BVP Eq. �15�, we obtain an equation for the
unknown radial basis, U·,N�t�

�mn
* �imn

T �x̄�U·,N�t�

= − �mn
* �

�e

CpqmnGpi,q
� �x − y�d�y

+ �mn
* �

��

Cpqk�Gpi,q
� �x − y��kmn

T �n�UE,N�1�n��y�dSy �83�

where ·= I, or E. Depending on whether x is inside or outside the
inclusion, the domain integral in Eq. �83� has two different forms,
which can be expressed in the canonical form

−�
�e

CpqmnGpi,q
� �x − y�d�y = ��imn

T �x̄�UI,��t� , ∀x � �I

�imn
T �x̄�UE,��t� , ∀x � �E

�
�84�

Here UI,��t� and UE,��t� are the radial basis arrays of Eshelby’s
classical solution for unbounded space �see Eqs. �78� and �79��. In
analogy to the Dirichlet case �see Eq. �51��, we stipulate that a
similar canonical form holds for the Neumann boundary contribu-
tion in Eq. �83�

Fig. 3 The components of the radial basis arrays U·,�, UB,D, U·,D, UB,N, and U·,N
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�
��

Cpqk�Gpi,q
� �x − y��kmn

T �n�UE,N�1�n��y�dSy

= �imn
T �x̄�UB,N�t�, ∀ x � � �85�

where UB,N�t� denotes the radial basis array arising from the Neu-
mann boundary. Substituting Eqs. �84� and �85� into Eq. �83� and
eliminating �mn

* and the circumference basis �imn
T �x̄�, one may

reduce Eq. �83� into a pair of parametric, algebraic equations for
the radial basis arrays, U·,N�t�, i.e.,

UI,N�t� = UI,��t� + UB,N�t�, 0 � t � �0 �86�

UE,N�t� = UE,��t� + UB,N�t�, �0 � t � 1 �87�

Here UI,��t� and UE,��t� are the radial basis vectors of Eshelby’s
classical solution of unbounded space �see Eqs. �78� and �79��.
The boundary contribution, UB,N�t� follows directly from Eq. �85�
as

�imn
T �x̄�UB,N�t� =�

��

Himn�x,y�dSy �88�

with the integrand

Himn = Cpqk�Gpi,q
� �x − y��kmn

T �n�UE,N�1�n��y�

=
1

8��1 − 
�r2 �U1
E,N�1���1 − 2
��2ninpr̄p�mn − r̄i�mn�

+ 3r̄inpr̄pnqr̄q�mn� + U2
E,N�1���1 − 2
��nmnpr̄p�in + nnnpr̄p�im

+ ninmr̄n + ninnr̄m − 2nmnnr̄i� + 3nmr̄ir̄nnpr̄p + 3nnr̄ir̄mnpr̄p�

+ U3
E,N�1���1 − 2
��2ninmnnr̄pnp − nmnnr̄i�

+ 3nmnnr̄inpr̄pnqr̄q�� �89�

With the aid of following integrals �see the Appendix�

�VIII� �
��

1

r2 r̄i dSy = 0 �90�

�IX� �
��

1

r2ninkr̄k dSy =
8�

3
tx̄i �91�

�X� �
��

1

r2ninjr̄k dSy =
4�

15
t�3x̄i� jk + 3x̄j�ik − 2x̄k�ij� �92�

�XI� �
��

1

r2nir̄jr̄knpr̄p dSy =
4�

15
t�4x̄i� jk − x̄j�ik − x̄k�ij� �93�

�XII� �
��

1

r2ninjnknpr̄p dSy =
�

105
�t�56 − 48t2��x̄i� jk + x̄j�ik

+ x̄k�ij� + 240t3x̄ix̄ jx̄k� �94�

�XIII� �
��

1

r2 r̄inpr̄pnqr̄q dSy = 0 �95�

�XIV� �
��

1

r2ninjr̄knpr̄pnqr̄q dSy =
�

105
�t�84 − 80t2��x̄i� jk + x̄j�ik�

− t�56 − 32t2�x̄k�ij + 64t3x̄ix̄ jx̄k� �96�

Eq. �88� can be integrated exactly. After some manipulations, the
final result can be expressed in a succinct form

UB,N�t� = K4�t�UE,N�1� �97�

where

K4�t� =
t

1 − 
�
2�1 − 2
�

3

2�1 − 5
�
15

− 2
�7 − 4t2�
35

0
7 − 5


15

7�5 − 
� + 6t2�4
 − 7�
105

0 0
4�7 − 10
�t2

35


�98�

Equation �97� represents the boundary contribution or “the image
contribution” to the disturbance displacement field inside the
RVE. Now, the parametric algebraic equations are solely in terms
of the displacement radial basis array U·,N�t�

UI,N�t� = UI,��t� + K4�t�UE,N�1�, 0 � t � �0 �99�

UE,N�t� = UE,��t� + K4�t�UE,F�1�, �0 � t  1 �100�

We assume that the radial basis array, UE,N�t�, depends continu-
ously on t so that

lim
t→1

UE,N�t� = UE,N�1� �101�

One can then solve for UE,N�1� by letting t=1 in Eq. �100�, i.e.,

UE,N�1� = �I − K4�1��−1UE,��1� �102�

which gives

UE,N�1� =
�0

3A

2�7 + 5
�� 7��0
2 − 1�

5
 + 7�0
2

35�1 − �0
2�
 �103�

Substituting Eq. �103� into Eq. �97�, one can evaluate the radial
basis array due to the boundary or image contribution

UB,N�t� =
�0

3tA

30�1 − 
��2 − 10


7 − 5


0


−
�0

3�1 − �0
2�tA

5�1 − 
��7 + 5
�� 2�7 − 10
t2�
7�5t2 − 3� − 20
t2

− 10t2�7 − 10
�
 �104�

Note the similarity between the two boundary contributions
UB,N�t� and UB,D�t� �see Eq. �80��. With the above result we can
now find UI,N�t� and UE,N�t� from Eqs. �86� and �87�.

With the radial basis arrays of the displacement field given, one
can apply the differential operator Eq. �45� to obtain the radial
basis array of the strain field, i.e.,

SI,��t� = D�t�UI,��t�, SE,��t� = D�t�UE,��t�

and

SB,N�t� = D�t�UB,N�t� �105�

SI,��t� and SE,��t� follow as given in Eq. �24�; furthermore by
differentiation we find

778 / Vol. 74, JULY 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



SB,N�t� =
�0

3

30�1 − 
��
2 − 10


7 − 5


0

0

0

0


−

�0
3�1 − �0

2�
5�1 − 
��7 + 5
��

2�7 − 10
t2�
7�5t2 − 3� − 20
t2

− 10t2�7 − 10
�
− 40
t2

30
t2

0

 �106�

In analogy to Eqs. �86� and �87�, the radial basis arrays S·,N of the
Neumann–Eshelby tensors now follows from

SI,N�t� = SI,��t� + SB,N�t�, 0 � t � �0 �107�

SE,N�t� = SE,��t� + SB,N�t�, �0 � t � 1 �108�
The Neumann–Eshelby tensors for a spherical inclusion embed-
ded in a spherical RVE under the prescribed traction boundary
condition can now be obtained from Eq. �22� which yields the
following exact and elementary expressions. The interior solution
is

Sijmn
I,N �x� =

1

1 − 

��5
 − 1

15
�1 − �0

3� −
2�7 − 10
t2�

5�7 + 5
�
�0

3�1 − �0
2�	�ij�mn

+ �1 − 


2
+

5
 − 7

30
�1 − �0

3� −
7�5t2 − 3� − 20
t2

5�7 + 5
�
�0

3�1

− �0
2�	��im� jn + �in� jm� +

2t2�7 − 10
�
7 + 5


�0
3�1 − �2��ijx̄mx̄n

+
8
t2

7 + 5

�3�1 − �0

2��mnx̄ix̄j −
6
t2

7 + 5

�0

3�1 − �0
2���imx̄jx̄n

+ �inx̄jx̄m + � jmx̄ix̄n + � jnx̄ix̄m�� �109�

and the exterior solution is

Sijmn
E,N �x� =

�0
3

1 − 

��3�2/t2 + 10
 − 5

30t3 +
5
 − 1

15
−

2�7 − 10
t2�
5�7 + 5
�

�1 − �0
2�	�ij�mn

+ �3�0
2/t2 − 10
 + 5

30t3 +
7 − 5


30
−

7�5t2 − 3� − 20
t2

5�7 + 5
�
�1 − �0

2�	��im� jn + �in� jm�

− ��0
2/t2 − 1

2t3 −
2t2�7 − 10
�

7 + 5

�1 − �0

2�	�ijx̄mx̄n − ��0
2/t2 + 2
 − 1

2t3 −
8
t2

7 + 5

�1 − �0

2�	�mnx̄ix̄j

− ��0
2/t2 − 


2t3 +
6
t2

7 + 5

�1 − �0

2�	��imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n + � jnx̄ix̄m� +
7�0

2/t2 − 5

2t3 x̄ix̄ jx̄mx̄n� �110�

Figure 4 shows a comparison of the Neumann–Eshelby tensor
with the original Eshelby tensor for �0=0.4 and 
=0.3. Here we
display the six coefficients of the radial basis arrays of the finite
Eshelby tensors, S·,N and the original Eshelby tensors, S·,�. One
can see that there are significant differences in the first three
coefficients.

A display of the displacement bases, U·,N, U·,�, and UB,N for

=0.3, is shown in Figs. 3�b�, 3�d�, and 3�f�. One can observe that
the difference between the Neumann and the original solution is
large, even though the volume fraction is only �0

3=0.43=0.064.
Figure 3 also illustrates different characters of the Dirichlet and
the Neumann solution.

Remark 4.1. The volumetric part of the disturbance strain �ij
d is

related to the volumetric part of the eigenstrain �ij
* by a scalar

coefficient

Siij j
·,� �x� = �iij jS

·,��t�

with

�iij j = �9,6,3,3,4,1�T �111�

From this, one can find some interesting relationships of the finite
Eshelby tensors. First we have

Siij j
·,� �x� = 9S1

·,� + 6S2
·,� + 3S3

·,� + 3S4
·,� + 4S5

·,� + S6
·,� = const. ∀ x � �

�112�

This implies that even though the finite Eshelby tensors derived
here are functions of the position vector x, the dilatational part of

the Eshelby tensor is a constant. In particular, the following dila-
tational contractions have elementary forms,

Siij j
I,D =

�1 − f��1 + 
�
1 − 


, Siij j
E,D = −

f�1 + 
�
1 − 


�113�

Siij j
I,N =

�1 + 
� + 2f�1 − 2
�
1 − 


, Siij j
E,N =

2f�1 − 2
�
1 − 


�114�

where f =�0
3 is the volume fraction of the inclusion phase. Second

it is interesting to note that the Dirichlet and the Neumann Es-
helby tensors follow the ordering

Siij j
I,N � Siij j

I,D, Siij j
E,N � Siij j

E,D, “ = ” holds iff f = 0 �115�

and that the difference between interior and exterior solution is

Siij j
I,D − Siij j

E,D = Siij j
I,N − Siij j

E,N =
1 + 


1 − 

= Siij j

I,� �116�

In classical theory, the dilatational eigenstrain has some special
properties, e.g., the dilatational eigenstrain due to a dilating inclu-
sion is constant. It appears that some of these properties are still
preserved in the finite spherical inclusion solution. This not only
validates the present theory, but also indicates that the present
theory may have some important applications, because dilatational
eigenstrains are usually associated with, for example, thermal ex-
pansion, lattice mismatch in quantum dots, and misfit strain in
phase transformation.
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4.3 Traction Distributions. Next, we examine the radial pro-
jection of the disturbance stress field. The physical meaning of
such a stress projection field is a set of parametric traction fields
on the surfaces of successive concentric spheres. Any point, x,
inside the spherical RVE lies on a spherical surface whose normal
x̄ is along the direction of the position vector x. Thus the para-
metric traction field is defined as

ti
d�x� = � ji

d �x�x̄j�x� �117�
which can be expressed in terms of the eigenstrain

ti
d�x� = �x̄j�x�Cijk��Sk�mn

I,� �x� − Ik�mn
s ��mn

* , ∀x � �I

x̄j�x�Cijk�Sk�mn
E,� �x��mn

* , ∀x � �E
�

�118�

Here Ik�mn
s is the fourth-order symmetric identity tensor, which

also falls into our definition of a fourth-order radial isotropic ten-
sor, i.e.,

Ik�mn
s = �k�mn

T �r�Is �119�

where Is= �0,1 /2 ,0 ,0 ,0 ,0�T. One may then rewrite Eq. �118� as

ti
d�x� = �x̄j�x�Cijk��k�mn

T �x̄��SI,��t� − Is��mn
* , ∀x � �I

x̄j�x�Cijk��k�mn
T �x̄�SE,��t��mn

* , ∀x � �E
�
�120�

In analogy to the displacement field �see Eq. �43�� the disturbance
traction can also be written as

ti
d�x� = �imn

T �x̄�T·,��t��mn
* �121�

where T·,� is the radial basis array of the traction field and �imn is
given by Eq. �42�. The preceding two equations establishes a re-
lation between the arrays T·,� and S·,�. We find that

TI,��t� = K1�SI,��t� − Is� �122�

Fig. 4 The components of the radial basis arrays S·,�, SB,N, and S·,N
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TE,��t� = K1SE,��t� �123�

where K1 is given by Eq. �54�. In view of Eqs. �71� and �72� we
can write

TI,��t� = TI,��t� + TB,��t� − T*�t�, 0 � t  �0 �124�

TE,��t� = TE,��t� + TB,��t�, �0 � t � 1 �125�
where the individual pieces are as follows. Corresponding to the
original Eshelby problem we have

TI,��t� = K1SI,��t� =
2	

15�1 − 
���1 − 12
 + 5
2�/�2
 − 1�
4 − 5


0

�126�

TE,��t� = K1SE,��t� =
	�0

3/t3

15�1 − 
��− 12�0
2/t2 + 10�1 − 
�

− 12�0
2/t2 + 5�1 + 
�

60��0
2/t2 − 1�


�127�

and the Dirichlet and Neumann boundary contributions are

TB,D�t� = K1SB,D�t� = −
2	�0

3

15�1 − 
���1 − 12
 + 5
2�/�2
 − 1�
4 − 5


0


+
	�0

3�1 − �0
2�

10�1 − 
��7 − 10
�� 2�7 + 5
t2�
7�5t2 − 3� + 10
t2

10t2�7 − 5
�
 �128�

TB,N�t� = K1SB,N�t� = −
	�0

3

15�1 − 
��2�1 + 5
�
7 − 5


0


−
2	�0

3�1 − �0
2�

5�1 − 
��7 + 5
�� 2�7 + 5
t2�
7�5t2 − 3� + 10
t2

10t2�7 − 5
�
 �129�

The final contribution, arising from the eigenstrains, is

T*�t� = K1Is = �2
/�1 − 2
�
1

0
 �130�

It is readily verified that for t=1 the traction basis corresponding
to the Neumann–Eshelby problem is

TE,N�1� = �0

0

0
 �131�

which assures ti�x��0 for ∀x���. Therefore the prescribed
Neumann boundary condition is indeed satisfied by the solution
presented. This fact can also be clearly observed in Fig. 5, which
shows the three components of T·,�, T·,� and TB,� for both the
Dirichlet problem �a�,�c�,�e�, and the Neumann problem
�b�,�d�,�f�. Here we choose �0=0.4 and 
=0.3. We observe that the
components of TE,N�t� go to zero at the boundary of the RVE �t
=1�. It can also be seen that the boundary corrections TB,D and
TB,N are substantial even though the volume fraction is small, i.e.,
�0

3=0.064.

5 Closure
In this paper, the elastic fields due to a spherical inclusion sub-

jected to prescribed eigenstrains and embedded in a finite spheri-
cal RVE are studied. On the outer surface of the RVE, uniform

boundary conditions are prescribed, which are either a displace-
ment �Dirichlet� boundary condition or a prescribed traction �Neu-
mann� boundary condition.

The notion of a radial isotropic tensor is introduced, which is a
generalization of the isotropic tensor. It has been argued that if a
spherical inclusion is placed concentrically within a spherical
RVE, the finite Eshelby tensors, which map the prescribed eigen-
strain to the disturbance strain field, are radial isotropic tensors. In
other words, the tensorial circumference basis for the finite Es-
helby tensors is the same as the basis for the Eshelby tensors in
unbounded space.

By utilizing this property, we have solved a pair of Fredholm
type integral equations, and we have obtained, for the first time,
the exact, closed form solutions for both the interior and exterior
Eshelby tensors for an inclusion in a finite, three-dimensional
RVE. It has been revealed that the finite Eshelby tensors depend
on both the location and the volume fraction of the inclusion,
which accurately captures both the size effect of the inclusion
and the boundary image contribution to the original inclusion
problem.

One of advantages of the present solution procedure is that it
circumvents the use of a finite Green’s function. As a matter of
fact, the solution of Green’s function of Navier’s equation for a
finite spherical domain is a more difficult problem, which is still
open. On the other hand, we hope that this work may shed some
light on the search for the finite Green’s function, however, we
believe, not without some added difficulties. We further note that,
by using our solution technique, one may be able to extend the
present solution to the elliptical inclusion problem in a finite do-
main. The difficulty then will be how to find the symmetry group
of the circumference basis of the elliptical geometry, which has to
be also invariant under the integral equation that involves the
boundary integrals Eqs. �51� and �85�.

We also would like to mention that the spherical RVE may be
subjected to general boundary conditions. Nevertheless, the two
fundamental solutions corresponding to the Dirichlet and the Neu-
mann boundary conditions form a basis for the finite Eshelby
tensors under a general boundary value problem. This issue will
be further discussed in detail in a separate paper �16�. It should
also be pointed out that even though the two basic finite Eshelby
tensors obtained here are the solutions of the homogeneous inclu-
sion problems, they are two fundamental elements for the finite
Eshelby tensors of a general RVE with more complex microstruc-
tures. By using superposition, they can be readily used to con-
struct the solutions for the n-inclusion �n�2� problem, and they
can be used to solve various homogenization problems as well as
the problem of inhomogeneity induced elastic fields in a finite
spherical domain.

To illustrate such applications, in the second part of this work
�11�, we apply the finite Eshelby tensors to evaluate the effective
material properties of composites. It has been shown that the
method employing the finite Eshelby tensor provides remarkably
accurate predictions in simple homogenization procedures. Fur-
thermore they furnish new variational bounds, and lead to a new
class of general homogenization methods.
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Appendix: Integration Formulas
In this Appendix the solution of the fourteen integrals listed in

Eqs. �55�–�61� and �90�–�96� is given. The procedure is similar to
the two dimensional case reported in Li et al. �17� and Wang et al.
�18�. Considering x+rr̄=y, where y���, we have
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r̄i =
A

r
�ni − tx̄i� �A1�

or

ni =
r

A
r̄i + tx̄i.

Recall that t= �x � /A. The relations defined in Eq. �A1� are illus-
trated in both Figs. 1 and 6�a�.

The surface integration over the RVE is performed w.r.t. the
surface of a unit sphere, S2, centered at point x. According to Fig.
6, we define a new basis êi at x such that ê3= x̄ Vector r̄ is then
described by the spherical coordinates � and �, i.e., r̄
= �cos � sin � sin � sin � cos ��T.

Denote dS as the surface element of �� �the outer surface of
the RVE�. The projection of dS to the perpendicular direction of r̄

is denoted by dŜ, and is given by dŜ=r2 sin � d� d�. It is related
to dS by

dS =
dŜ

cos �
=

r2

cos �
sin �d� d� =

r2

cos �
dS2 �A2�

where dS2=sin � d� d� is the surface element on the unit sphere
S2. Considering the shaded triangle �0xy� in Fig. 6, we find that

A

r
=

1

1 − 2t cos � + t2

�A3�

and

cos � = 
1 − t2 sin2 � �A4�

Furthermore from yiyi=A2, one can derive the relation

r = A�− t cos � + 
1 − t2 sin2 �� �A5�

Figure 6�b� shows that for every point P on the surface of the unit
sphere there exists a point P* such that r̄�P�=−r̄�P*�. Thus any
function, Lo�r̄�= r̄i , r̄ir̄ j , r̄ir̄ jr̄m , . . ., which is odd in r̄, satisfies

Fig. 5 The components of the radial basis arrays T·,�, TB,D, T·,D, TB,N, and T·,N
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Lo�r̄�P��=−Lo�r̄�P*��, and therefore the integration of an odd
function of r̄, i.e., Lo�r̄�, over the surface of the sphere will be
zero. In particular, by applying Eqs. �A2� and �A4�, we find that

�
��

Lo�r̄�
r2 dS =�

S2

A
Lo�r̄�


1 − t2 sin2 �
dS2 = 0 �A6�

Note that sin2 � is an even function in r̄, i.e., sin2 ��r̄�
=sin2 ��−r̄�. Further, we denote an even function of r̄ as Le�r̄�, if
Le�r̄�P��=Le�r̄�P*��. Then, by virtue of Eqs. �A3�–�A5�, it fol-
lows that

�
��

Le�r̄�
r

dS =�
S2

A�1 −
t cos �


1 − t2 sin2 �
�Le�r̄�dS2

= A�
S2

Le�r̄�dS2 �A7�

because cos � is an odd function in r̄. Using Eqs. �A7� and �A6�
we obtain the following seven elemental integrals

�1� �
��

1

r
dSy = 4�A �A8�

�2� �
��

r̄i

r2dSy = 0 �A9�

�3� �
��

r̄ir̄ j

r
dSy = A�

S2

r̄ir̄ j dSu =
4�

3
A�ij �A10�

�4� �
��

r̄ir̄ jr̄m

r2 dSy = 0 �A11�

�5� �
��

r̄ir̄ jr̄mr̄n

r
dSy = A�

S2

r̄ir̄ jr̄mr̄n dSu =
4�

15
A��ij�mn + �im� jn

+ �in� jm� �A12�

�6� �
��

r̄ir̄ jr̄mr̄nr̄r

r2 dSy = 0 �A13�

�7� �
��

r̄ir̄ jr̄mr̄nr̄rr̄s

r
dSy = A�

S2

r̄ir̄ jr̄mr̄nr̄rr̄s dSu =
4�

105
A��ij�mn�rs

+ �im� jn�rs + �in� jm�rs + �ir�mn� js

+ �is�mn� jr�ij�mr�ns + �im� jr�ns

+ �in� jr�ms + �ir�mj�ns

+ �is�mj�nr�ij�ms�nr + �im� js�nr

+ �in� js�mr + �ir�ms�nj + �is�mr�nj�
�A14�

Using these seven elemental integrals and Eq. �A1� we obtain all
the integrals listed in Eqs. �55�–�61� and �90�–�96�.
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The Eshelby Tensors in a Finite
Spherical Domain—Part II:
Applications to Homogenization
In this part of the work, the Eshelby tensors of a finite spherical domain are applied to
various homogenization procedures estimating the effective material properties of multi-
phase composites. The Eshelby tensors of a finite domain can capture the boundary effect
of a representative volume element as well as the size effect of the different phases.
Therefore their application to homogenization does not only improve the accuracy of
classical homogenization methods, but also leads to some novel homogenization theories.
This paper highlights a few of them: a refined dilute suspension method and a modified
Mori–Tanaka method, the exterior eigenstrain method, the dual-eigenstrain method,
which is a generalized self-consistency method, a shell model, and new variational
bounds depending on the different boundary conditions. To the best of the authors’
knowledge, this is the first time that a multishell model is used to evaluate the Hashin–
Shtrikman bounds for a multiple phase composite �n�3�, which can distinguish some of
the subtleties of different microstructures. �DOI: 10.1115/1.2711228�

1 Introduction
In the first part of this work �1�, which is referred to as Part I

hereafter, the exact solutions of the elastic fields of a spherical
inclusion embedded in a finite spherical representative volume
�RVE� are obtained under both the prescribed displacement �Di-
richlet� boundary condition and the prescribed traction �Neumann�
boundary condition.

For simplicity, we refer to the Dirichlet– and Neumann–
Eshelby tensors of a finite domain as the finite Eshelby tensors. A
salient feature of the finite Eshelby tensors is their ability to cap-
ture both the boundary effect, or image force effect, of an RVE
and the size effect, i.e., the dependency on the volume fraction of
the different phases of a composite. This offers great advantages
and flexibilities in homogenization procedures, which is the focus
of this second part of our work. Using the new finite Eshelby
tensors we can modify the classical homogenization schemes and
obtain some remarkable results. Furthermore several new homog-
enization schemes can be constructed by the application of the
finite Eshelby tensors.

In recent years, nanocomposites have emerged as promising
materials for future technologies e.g., Refs. �2,3�, because of their
high strength, excellent conductivity in both heat transfer and
electricity. Considerable attention has been devoted to study the
interfacial strength, size effects, and agglomeration effects of
nanocomposites �e.g. Fisher et al. �4�, Odegard et al. �5�, Shi et al.
�6�, and Sharma and Ganti �7��. The classical homogenization
techniques have shown limitations to deal with the above issues.
There is a call for a refined micromechanics theory for nanocom-
posites, e.g, Ref. �8�. One of the objectives of this research is
towards establishing a refined micromechanics homogenization
theory for nanocomposites.

We proceed, in the following section, by deriving expressions
for the average finite Eshelby tensors in a RVE. These are needed
to characterize the average disturbance fields, which have some
important properties. In Sec. 3 we re-examine two conventional

homogenization methods by using the average finite Eshelby ten-
sor. Further, in Sec. 4, we discuss the so-called dual eigenstrain
method, which is a combination of an exterior and interior eigen-
strain homogenization method. This scheme is a generalized self-
consistency method, which leads to a new class of predictor–
corrector schemes. In Sec. 5, a shell model is proposed to capture
microstructure effects on the homogenization of a multiphase
composite. Finally, in Sec. 6, the Hashin–Shtrikman �HS� varia-
tional bounds are rederived using the finite Eshelby tensors to
incorporate the boundary conditions. A multishell model is used to
evaluate the exact HS bounds for a multiphase composite with n
�3 using a multivariable optimization procedure. Conclusions are
drawn in Sec. 7.

2 Average Eshelby Tensors and Average Disturbance
Fields

In Part I we derived the finite Eshelby tensors, S·,D and S·,N,
which are valid for a spherical inclusion �I embedded at the cen-
ter of a finite, spherical RVE � �see Fig. 1 of Part I�. In accor-
dance with Part I we adopt the following nomenclature to describe
the problem: The radii of inclusion and RVE are denoted by a and
A, their ratio by �0=a /A. Any point x inside the RVE can be
written as x= tAx̄, where t= �x� /A and x̄=x / �x� denote the normal-
ized radial distance and direction of x. The elasticity tensors of the
two domains �I and �E are denoted by CI and CE=C.

For clarity, we first derive the expression of the average finite
Eshelby tensors and discuss their relation with the average distur-
bance strain field.

2.1 Average Eshelby Tensors. The spatial averaging operator
is defined as

�. . .�� =
1

����
�

. . . d� �1�

where ��� denotes the volume of the spatial domain �. Due to the
radial isotropic structure of the finite Eshelby tensors, Sijmn

·,� �x�
=�ijmn

T �x̄�S·,��t� �·= I, E; �=D, N�, their average over the RVE
domain � can be written as
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�Sijmn
·,� �x��� =

1

����
�

S·,��t� · �ijmn�x̄�d� = �3t2S·,���0,1� · ��ijmn�S2

�2�

where S2 denotes the surface of a sphere with unit radius, and
where

��ijmn�S2
ª

1

4�
�

S2

�ijmn dS2 �3�

�3t2S·,���a,b� ª
1

b3 − a3�
a

b

3t2S·,� dt �4�

The above decomposition is possible since S is independent of the
orientation x̄ and �ijmn is independent of the radial distance t.
Performing the averaging of �ijmn over the unit sphere yields

��ijmn�S2
=

1

4�
�

S2

�ijmn dS2 = 	
3Eijmn

�1�

2Eijmn
�1� + 2Eijmn

�2�

Eijmn
�1�

Eijmn
�1�

4

3
Eijmn

�1� +
4

3
Eijmn

�2�

1

3
Eijmn

�1� +
2

15
Eijmn

�2�


 = 	
3 0

2 2

1 0

1 0

4

3

4

3

1

3

2

15



��Eijmn

�1�

Eijmn
�2� � �5�

where Eijmn
�1� and Eijmn

�2� are the following isotropic basis tensors

Eijmn
�1� = 1

3�ij�mn, Eijmn
�2� = 1

2 ��im� jn + �in� jm� − 1
3�ij�mn �6�

For each boundary condition �Dirichlet or Neumann�, we have
two Eshelby tensors, interior SI,��x� for x��I, or exterior SE,��x�
for x�� /�Iª�E. Their average over the respective domains
follows as

�Sijmn
I,� ��I

= �3t2SI��0,�0� · ��ijmn�S2
,

�Sijmn
E,� ��E

= �3t2SE���0,1� · ��ijmn�S2
�7�

Since the averaging of �ijmn over S2 is an isotropic tensor, we
obtain

�Sijmn
I,� ��I

= s1
I,�Eijmn

�1� + s2
I,�Eijmn

�2� �8�

�Sijmn
E,� ��E

= s1
E,�Eijmn

�1� + s2
E,�Eijmn

�2� �9�

The coefficients s1
I,�, s2

I,� and s1
E,�, s2

E,� depend on the volume
fraction fª�0

3 and are given as

s1
I,D =

�1 + ���1 − f�
3�1 − ��

, s2
I,D =

2�4 − 5���1 − f�
15�1 − ��

− 21�u�f��1 − f2/3�

�10�

s1
E,D = −

�1 + ��f

3�1 − ��
, s2

E,D = −
2�4 − 5��f

15�1 − ��
+ 21�u�f�f

1 − f2/3

1 − f

�11�

for the Dirichlet boundary condition �BC� and

s1
I,N =

1 + � + 2�1 − 2��f

3�1 − ��
,

s2
I,N =

2�4 − 5�� + �7 − 5��f

15�1 − ��
+ 21�t�f��1 − f2/3� �12�

s1
E,N =

2�1 − 2��f

3�1 − ��
, s2

E,N =
�7 − 5��f

15�1 − ��
− 21�t�f�f

1 − f2/3

1 − f
�13�

for the Neumann BC. Here we have denoted

�u�f� ª
f�1 − f2/3�

10�1 − ���7 − 10��
, �t�f� ª

4f�1 − f2/3�
10�1 − ���7 + 5��

�14�
In fact, Eqs. �10�–�13� are the precise formulas of the size-effect
characterization of of the inclusion problem. One can find that this
effect is linear for the bulk modulus, whereas it is nonlinear in the
shear modulus. In contrast to the average finite Eshelby tensors
we recall the average Eshelby tensor for a spherical inclusion in
an unbounded medium

�Sijmn
·,	 ��·

= s1
·,	Eijmn

�1� + s2
·,	Eijmn

�2� , · = I or E �15�

s1
I,	 =

1 + �

3�1 − ��
, s2

I,	 =
2�4 − 5��
15�1 − ��

�16�

s1
E,	 = 0, s2

E,	 = 0 �17�

Figure 1 displays the behaviors of all the coefficients si
·,� in de-

pendence of f . The Poisson’s ratio is chosen as �=0.2. We observe
that for the Dirichlet case the coefficients decrease, while for the
Neumann case they increase with growing f . The classical Es-
helby tensors do not depend on f .

Note that when f →0 in Eqs. �10�–�13� we recover the expres-
sions for the average of the classical Eshelby tensors. The fact that
si

E,	=0 implies the well-known Tanaka–Mori Lemma �see below�.
Let us define the difference 
si

�=si
I,�−si

E,�; we have

Fig. 1 Average Eshelby tensor coefficients s1
I , s1

E
„i=1… and s2

I ,
s2

E
„i=2…
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s1
D = 
s1

N = 
s1
	 =

1 + �

3�1 − ��
�18�


s2
D = 
s2

	 − 21�u�f�
1 − f2/3

1 − f
, 
s2

	 =
2�4 − 5��
15�1 − ��

�19�


s2
N = 
s2

	 + 21�t�f�
1 − f2/3

1 − f
�20�

2.2 The Average Disturbance Fields. The finite Eshelby ten-
sors can be conveniently used to represent the average disturbance
fields. Recall the classical Tanaka–Mori Lemma �9�: the exterior
average disturbance strain in the exterior domain is zero �see Eq.
�17��

��d��E
= �SE,	��E

:�* = �s1
E,	E�1� + s2

E,	E�2��:�* = 0 �21�

A similar result holds for the disturbance stress field for a linear
elastic medium. Using the new finite Eshelby tensors SD and SN

the original Tanaka–Mori Lemma result is modified. The exterior
average disturbance strain field is neither zero for the Dirichlet
problem

��d��E
= �SE,D��E

:�* = �s1
E,DE�1� + s2

E,DE�2��:�* � 0 �22�

nor is it zero for the Neumann problem

��d��E
= �SE,N��E

:�* = �s1
E,NE�1� + s2

E,NE�2��:�* � 0 �23�

�unless f =0�. However, in view of Eqs. �11� and �13�, we find that
for both problems

��d��E
= O�f� �24�

which can be viewed as a modified Tanaka–Mori Lemma. One
then recovers the original result as f →0.

Moreover, consider the Dirichlet problem. We can exactly sat-
isfy a key assumption, the average strain theorem

���� = ��0 + �d�� = �0 + ��d�� = �0 �25�

since the average disturbance strain field in � is zero

��d�� = f��d��I
+ �1 − f���d��E

= �f�SI,D��I
+ �1 − f��SE,D��E

�:�* = 0

�26�
Likewise, for the Neumann problem, the average stress theorem

���� = �0 �27�

is exactly satisfied since ��d��= f��d��I
+ �1− f���d��E

=0 due to

f�TI,N��I
+ �1 − f��TE,N��E

= O �28�

where TI,N and TE,N are the conjugate Neumann Eshelby tensors
related to the Neumann Eshelby tensors by the expressions

�SI,N��I
+ �TI,N��I

= Is

and

�SE,N��E
+ �TE,N��E

= O �29�

where Is is the fourth-order symmetric unit tensor and O is the
fourth-order null tensor.

3 Improvement of the Classical Homogenization
Methods

We now use the finite Eshelby tensors in two classical homog-
enization procedures to estimate effective material properties,
namely, the homogenization for composites with dilute suspension
and the Mori–Tanaka model.

3.1 Dilute Suspension Model. The dilute suspension method
predicts two different effective elastic tensors depending on the
different boundary conditions e.g., Ref. �10�. We first consider the

prescribed macrostrain BC, i.e., the Dirichlet boundary value
problem �BVP� �ud=0 on ���, as discussed in Part I. The average
stress consistency condition for the considered homogenization
scheme �for prescribed eigenstrain within �I as motivated in Part
I� is

CI:��0 + ��d��I
� = C:��0 + ��d��I

− �*�, ∀ � �I �30�

Note that CI, C, �0, and �* are considered constant. From Eq. �30�
we obtain

�0 + ��d��I
= A:�* �31�

where Aª �C−CI�−1 :C. Consider the interior average of the dis-
turbance strain field

��d��I
= �SI,D��I

:�* �32�

and substitute Eq. �32� into Eq. �31�. This yields

�* = �A − �SI,D��I
�−1:�0 �33�

and consequently,

����I
= �0 + ��d��I

= A:�A − �SI,D��I
�−1:�0 �34�

Following the standard procedure, e.g., Ref. �10�, we find the
estimate of the effective elasticity tensor for the prescribed mac-
rostrain BC

C̄ = C − fC:�A − �SI,D��I
�−1 �35�

The only difference between Eq. �35� and the classical solution for
dilute suspension is that a different Eshelby tensor is used. Con-
sidering isotropic materials, the effective bulk and shear moduli
become

�̄ = � − f� 1

1 − �I/�
− s1

I,D�−1

, �̄ = � − f� 1

1 − �I/�
− s2

I,D�−1

�36�
For the prescribed macrostress boundary condition, the new

dilute suspension estimate is

D̄ = D + fD:�A − �SI,N��I
�−1 �37�

where �SI,N��I
is the interior average Neumann–Eshelby tensor.

For isotropic composites, the corresponding effective bulk and
shear moduli are

�̄−1 = �−1 + f�−1 1

1 − �I/�
− s1

I,N�−1

,

�̄−1 = �−1 + f�−1 1

1 − �I/�
− s2

I,N�−1

�38�

Figure 2 shows the curves of the normalized bulk modulus, �̄ /�,
and shear modulus, �̄ /�, in dependence of the volume fraction f
of the inclusion. The material properties of the inclusion are cho-
sen as �I /�=10, �I /�=4, with �=0.1. We have plotted the result
Eq. �35� using the Dirichlet–Eshelby tensor SI,D �dark� and �37�
using the Neumann–Eshelby tensor SI,N �light�. We compare the
new results with the conventional dilute suspension results using
the infinite Eshelby tensor SI,	 in Eq. �35� �dashed line 2� and in
Eq. �37� �dashed line 1�.

From this figure, we can observe the well-known result that the

classical solution is not self-consistent, i.e D̄� C̄−1. When we use
the new finite Eshelby tensors this situation is significantly im-
proved. For the effective bulk modulus, the new scheme is self
consistent, i.e., the two �̄ in Eqs. �36� and �38� are equal. The
estimated effective shear modulus is not self consistent, but it is
quite close as shown in Fig. 2.
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3.2 A Refined Mori–Tanaka Model. The original Mori and
Tanaka model �11� is derived for an infinite RVE. In the follow-
ing, we rederive the Mori–Tanaka estimate for a two-phase com-
posite in a finite RVE.

In reality, the boundary condition of an RVE is neither a pre-
scribed displacement boundary condition nor is it a prescribed
traction boundary condition. One can thus define a “general finite
Eshelby tensor” as the linear combination of the Dirichlet–
Eshelby tensor and the Neumann–Eshelby tensor corresponding to
general boundary conditions

S·,F = S·,D + �1 − �S·,N, · = I, or E �39�

For detailed justification, derivation, and discussion of this con-
cept, readers are referred to Ref. �12�.

The essence of the Mori–Tanaka procedure is the following
incremental homogenization procedure. Let us denote the current
background strain of the RVE as ��b��, which may or may not be
the average strain of the RVE. Adding an inclusion �or a cluster of
inclusions represented by a single inclusion� into the RVE, the
new average strain ��� in each phase will be the sum of the back-
ground strain and the disturbance strain

����I
= ��b�� + ��d��I

�40�

����E
= ��b�� + ��d��E

�41�

The classical Tanaka–Mori Lemma states that ��d��E
=0. This is

only true when the RVE is infinite, since �SE,	��E
=0. For a finite

RVE, we have to take into account the change of the effective
material properties in the matrix

����I
= ��b�� + �SI,F��I

:�* �42�

����E
= ��b�� + �SE,F��E

:�* �43�

Consider the average stress consistency condition �for x��I�

CI:����I
= C:�����I

− �*� �44�

Solving Eqs. �44� for ����I
yields

����I
= A:�* �45�

where A= �C−CI�−1 :C. Considering Eq. �42�, we can express the
eigenstrain in terms of the background strain as

�* = �A − �SI,F��I
�−1:��b�� �46�

Considering the basic average equation of the strain

���� = f����I
+ �1 − f�����E

�47�

and substituting Eqs. �42�, �43�, and �46� into Eq. �47�, we can
express the average strain ���� in terms of the background strain
as

���� = AF:��b�� �48�

Here AF is the concentration tensor defined as

AF = �A − �1 − f���SI,F��I
− �SE,F��E

��:�A − �SI,F��I
�−1 �49�

By virtue of Eqs. �45� and �46�, the average stress field inside the
inclusion can now be written as

����I
= C:�A − I�4s��:�A − �SI,F��I

�−1:��b�� �50�

Applying the basic equation for mixture to the stress field,

���� = f����I
+ �1 − f�����E

�51�

and substituting Eqs. �42�, �43�, and �46� into Eq. �51�, we can
express the average stress ���� in terms of the background strain
as

���� = BF:��b�� �52�

with

BF = C:�A − fI�4s� − �1 − f���SI,F��I
− �SE,F��E

��:�A − �SI,F��I
�−1

�53�

Finally from ����= C̄ : ����, we obtain the effective elastic tensor

C̄ = C − fC:�A − �1 − f���SI,F��I
− �SE,F��E

��−1, D̄ = C̄−1

�54�
We note in passing that this model is self consistent.

The homogenization procedure with finite Eshelby tensors, SI,F

and SE,F, furnishes a refined Mori–Tanaka model. For isotropic
two-phase composites, the corresponding formulas are

�̄ = � − f�� 1

1 − �I/�
− �1 − f�
s1

F�−1

,

�̄ = � − f�� 1

1 − �I/�
− �1 − f�
s2

F�−1

�55�

Note that the differences 
s1
F=s1

I,F−s1
E,F and 
s2

F=s2
I,F−s2

E,F are
given by Eqs. �18�–�20�.

Figure 3 displays the profiles of the normalized effective
moduli �̄ /� and �̄ /� over the volume fraction of the second
phase. The same material data is used for the results shown in
Fig. 2.

In the case of the bulk modulus the dark, dashed and the light
curves match exactly, i.e., they are the same analytically. Indeed,
�̄ in Eq. �55� is mathematically identical when applying S·,	, S·,D,

Fig. 2 Effective moduli �̄, �̄ „or �eff and �eff… obtained by using
the dilute suspension method
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or S·,N, since 
s1
	=
s1

D=
s1
N as noted in Eq. �18�. For the shear

modulus �̄ Eq. �55� gives three distinct lines when applying S·,	,
S·,D, or S·,N.

Remarkably, when comparing Figs. 2 and 3, we find that the
dark and light lines match exactly. In other words, it can be shown
that by using the finite Eshelby tensors, the dilute suspension
method Eqs. �35� and �37� is equivalent to the Mori–Tanaka
method Eq. �54�, when using the corresponding S·,D and S·,N. The
finite Eshelby tensors S·,D and S·,N unify the previously distinct
homogenization methods.

4 Exterior/Interior Eigenstrain Method
In the classical eigenstrain homogenization method, since the

ambient space �i.e., matrix phase� is assumed to be unbounded,
the eigenstrain can only be prescribed inside the inclusion. There-
fore the stress or strain consistency condition, i.e., the equivalent
eigenstrain principle, is only applicable to the interior. Consider-
ing the eigenstrain to be prescribed in the interior domain is the
case we have considered so far.

For a finite RVE, the equivalent eigenstrain principle can be
equally applied to its interior �inclusion phase� or exterior region
�matrix phase�. By treating the interior and exterior homogeniza-
tion scheme with equal footing, one may be able to characterize
certain patterns of the phase distribution in an RVE in addition to
merely considering the volume fraction of the phases. Such pat-
terns may be the concentration of inhomogeneities towards the
center or boundary of the RVE. The exterior eigenstrain method
has been studied before by Castles and Mura �13�, however, with-
out the knowledge of the finite Eshelby tensor. In this section, we
first discuss the exterior eigenstrain method, which relies on the

interior eigenstrain results previously obtained. Second we intro-
duce a method which considers the simultaneous prescription of
interior and exterior eigenstrains.

4.1 Exterior Eigenstrain Method. Analogously to the inte-
rior eigenstrain method, the idea of the exterior eigenstrain
method is as follows. We choose the interior phase, characterized
by elasticity CI, as the comparison solid of the RVE. To account
for the difference of elastic properties, a uniform eigenstrain is
prescribed in the exterior region of the RVE, i.e.

�*�x� = �0, ∀x � �I

�*, ∀x � �E
� �56�

The concept is illustrated in Fig. 4.
It follows that the constitutive relation between the disturbance

stress and strain fields has the form

�d�x� = CI:��d�x� − �*�x��, ∀ x � � �57�

Accordingly, Somigliana’s identity reads

um
d �x� = −�

�E

Cijk�
I Gim,j

	 �x − y�d�y�k�
* +�

��

Cijk�
I uk

d�y�Gim,j
	 �x

− y�n��y�dSy +�
��

Cijk�
I uk,�

d �y�nj�y�Gim
	 �x − y�dSy �58�

By considering either the Dirichlet or Neumann boundary condi-
tion prescribed on the RVE boundary, the above equation can be
solved to relate the disturbance strain field to the prescribed exte-
rior eigenstrain through the so called exterior Eshelby tensors

denoted by S̄·,�. They are defined from

�d�x� =�S̄E,��x�:�*, ∀x � �E

S̄I,��x�:�*, ∀x � �I
� �59�

where the superscripts ·= I or E denote the tensors evaluated at the
interior or exterior regions, and where �=D or N stands for either
the Dirichlet �prescribed displacement� or Neumann boundary
�prescribed traction� condition.

The disturbance fields in Eq. �58� can be solved exactly by
means of superposition. Since �E=� /�I the resulting exterior
eigenstrain Eshelby tensors can be written as a combination of the
interior eigenstrain Eshelby tensors, which have been solved in
Part I, as

S̄E,� = SI,��CI, f = 1� − SE,��CI, f I�, x � �E �60�

S̄I,� = SI,��CI, f = 1� − SI,��CI, f I�, x � �I �61�

We emphasize that for this case �the exterior eigenstrain method�
the Eshelby tensor S·,� in the above equations takes the material

Fig. 3 Effective moduli �̄, �̄ „or �eff and �eff… obtained by using
the Mori–Tanaka method

Fig. 4 Illustration of interior and exterior eigenstrain method
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property CI of the inclusion �the comparison solid�, and the vol-
ume fraction f I of the inclusion phase. Given the boundary con-
dition �=D or N, the first term of the equations above can be
easily evaluated �see Part I for the expressions of SI,��

SI,D�CI, f = 1� = O

and

SI,N�CI, f = 1� = Is �62�

where O and Is are the fourth-order zero tensor and identity tensor,
respectively. Therefore the exterior eigenstrain Eshelby tensors
can be related explicitly to the interior eigenstrain Eshelby tensors
by

S̄·,D = − S·,D�CI, f I�, x � � �63�

S̄·,N = Is − S·,N�CI, f I�, x � � �64�

To proceed further, the average of the exterior eigenstrain Eshelby

tensors S̄·,� is needed. Following Sec. 2, we find

�S̄ijmn
I,� ��I

= s̄1
I,�Eijmn

�1� + s̄2
I,�Eijmn

�2� �65�

�S̄ijmn
E,� ��E

= s̄1
E,�Eijmn

�1� + s̄2
E,�Eijmn

�2� �66�

with

s̄1
I,D = −

�1 + ���1 − f�
3�1 − ��

, s̄2
I,D = −

2�4 − 5���1 − f�
15�1 − ��

+ 21�u�1 − f2/3�

s̄1
E,D =

�1 + ��f

3�1 − ��
, s̄2

E,D =
2�4 − 5��f

15�1 − ��
− 21�uf

1 − f2/3

1 − f
�67�

for the Dirichlet BVP and

s̄1
I,N =

2�1 − 2���1 − f�
3�1 − ��

, s̄2
I,N =

�7 − 5���1 − f�
15�1 − ��

− 21�t�1 − f2/3�

s̄1
E,N = 1 −

2�1 − 2��f

3�1 − ��
, s̄2

E,N = 1 −
�7 − 5��f

15�1 − ��
+ 21�t f

1 − f2/3

1 − f

�68�

for the Neumann BVP. Here �u and �t are as given in Eq. �14�.
Note that we have omitted all superscripts on the right hand sides,
with the understanding that all material properties in the above
expressions �and in �u and �t� are in terms of the inclusion phase
�i.e., �=�I�. Further, the volume fraction above is that of the in-
clusion �i.e., f = f I�. Substituting f I=1− fE above and comparing
Eqs. �67� and �68� with Eqs. �10�–�13�, the following connections
can be established between the exterior and interior eigenstrain
Eshelby tensors

s̄1
I,���, fE� = s1

E,���, f I�, s̄2
I,���, fE� � s2

E,���, f I� �69�

s̄1
E,���, fE� = s1

I,���, f I�, s̄2
E,���, fE� � s2

I,���, f I� �70�

where �=D ,N. Note that the equality holds between the bulk
coefficients s1, whereas the deviatoric coefficients s2 are only ap-
proximately equal. Likewise we can substitute f I=1− fE into Eqs.
�10�–�13� and compare these equations to Eqs. �67� and �68�.
Then we obtain

s̄1
I,���, f I� = s1

E,���, fE�, s̄2
I,���, f I� � s2

E,���, fE� �71�

s̄1
E,���, f I� = s1

I,���, fE�, s̄2
E,���, f I� � s2

I,���, fE� �72�

Next we consider the Mori–Tanaka model as an example to illus-
trate the exterior eigenstrain method and its relation to the interior
eigenstrain method. Recall the Mori–Tanaka formula for the inte-
rior eigenstrain homogenization Eq. �54�

C̄ = CE − f IC
E:��CE − CI�−1:CE − fE��SI,��CE, f I���I

− �SE,��CE, f I���E
��−1 �73�

Let us consider a two-phase composite with elasticities C1 and C2.
Geometrically, the two phases can be arranged in two ways. We
either let phase 1 be the matrix and phase 2 the inclusion �CE

=C1, CI=C2� or vice versa �CI=C1, CE=C2�. The equation above
then takes the two forms

C̄ = C1 − f2C1:��C1 − C2�−1:C1 − f1��SI,��C1, f2���I

− �SE,��C1, f2���E
��−1 �74�

C̄ = C2 − f1C2:��C2 − C1�−1:C2 − f2��SI,��C2, f1���I

− �SE,��C2, f1���E
��−1 �75�

Reexamining the Mori–Tanaka method via exterior eigenstrain
homogenization, we obtain

C̄ = CI − fEC
I:��CI − CE�−1:CI − f I��S̄E,��CI, f I���E

− �S̄I,��CI, f I���I
��−1 �76�

which we call the exterior eigenstrain Mori–Tanaka formula. For
a two-phase composite with elastic stiffnesses C1 and C2, we then
have

C̄ = C2 − f1C2:��C2 − C1�−1:C2 − f2��S̄E,��C2, f2���E

− �S̄I,��C2, f2���I
��−1 �77�

C̄ = C1 − f2C1:��C1 − C2�−1:C1 − f1��S̄E,��C1, f1���E

− �S̄I,��C1, f1���I
��−1 �78�

Equations �74�, �75�, �77�, and �78� constitute the four flavors of
the Mori–Tanaka method. In view of relations �69�–�72� we can
see that Eq. �77� is approximately equal to Eq. �75� and that Eq.
�78� is approximately equal to Eq. �74�. In fact, for the effective
bulk modulus �̄ this approximation becomes an equality. For the
effective shear modulus �̄, however, there are slight differences.
These differences can be seen in Fig. 5, which shows the effective
shear modulus �̄ for the four cases.

The material properties used in the calculation are �2=4�1,
�2=10�1, and �2=0.3. The traction boundary condition ��=N� is
used in the calculation. One can see how close the pairs 1, 4 and
2, 3 are. In the case of the effective bulk modulus these pairs are
equal. We can therefore conclude that exchanging the material
phases is approximately equal to exchanging the regions where
the eigenstrain is prescribed.

This, however, does not mean that the exterior eigenstrain
method has no technical merits. In the following sections we shall
discuss two new models that are built upon the idea of the exterior
eigenstrain method. The first, the dual eigenstrain method, fur-
nishes a method that allows the smooth transition between curves
1 and 3 or between 2 and 4. Second, in Sec. 5, the shell model, a
novel multiphase model, is a further generalization of this idea.

4.2 Dual Eigenstrain Method. We have seen in Fig. 5 that,
for fixed phase distribution, the interior and exterior eigenstrain
methods give very different homogenization results �i.e., the dif-
ference between 1 and 3 or between 2 and 4�. We therefore want
to consider a model that prescribes an eigenstrain field in both the
interior and exterior regions of the inclusion simultaneously

�*�x� = ��I
*, ∀x � �I

�E
* , ∀x � �E

� �79�

The model, termed the dual eigenstrain method is discussed in

Journal of Applied Mechanics JULY 2007, Vol. 74 / 789

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



detail in Ref. �12� and we only illustrate the main concept of the
method here. The central idea of the dual eigenstrain method is to
treat the homogenization of both the inclusion and matrix phase
equally. Such a model has no preference between the two material
phases, because neither phase is chosen as the reference state. The

comparison solid for the RVE is rather characterized by C̃, which

can be considered as an estimate of the effective modulus C̄. Con-

crete choices for C̃ are considered later.
Denoting the average background strain as �b, the dual stress

consistency conditions then become

CI:��b + �d�x�� = C̃:��b + �d�x� − �I
*�, ∀ x � �I �80�

CE:��b + �d�x�� = C̃:��b + �d�x� − �E
*�, ∀ x � �E �81�

The disturbance strain field �d is the superposition of the distur-
bance strain field due to the interior eigenstrain and the distur-
bance strain field due to the exterior eigenstrain field, i.e.

�d�x� =� SI,�:�I
* + S̄I,�:�E

* , ∀x � �I

SE,�:�I
* + S̄E,�:�E

* , ∀x � �E
� �82�

Here S·,� is the interior eigenstrain finite Eshelby tensor as derived

in Part I and S̄·,� is the exterior eigenstrain Eshelby tensor as given
in the preceding section; �both accepting ·= I or E and �=D or N�.
Both S·,� and S̄·,� take C̃ as the comparison solid. We note that the
dual eigenstrain method contains the two special cases �E

* =0, with

C̃=CE and �I
*=0, with C̃=CI, which are the interior and exterior

eigenstrain methods, respectively.
From here on the derivation proceeds in a similar manner as the

interior eigenstrain case �see Sec. 3�. The effective elasticity
modulus is obtained as

C̄ = �fCI:AE + �1 − f�CE:AI�:�fAE + �1 − f�AI�−1 �83�

with the concentration tensors

AE = Is − C̃−1:�C̃ − CE�:
S�

AI = Is − C̃−1:�C̃ − CI�:
S� �84�

and the difference


S�
ª �SI,��C̃, f = f I���E

− �SE,��C̃, f = f I���I
�85�

Here we have indicated that S·,� depends on the comparison solid

C̃ and the volume fraction f = f I. We note that the coefficients of

S� follow from Eqs. �18�–�20� given in Sec. 2, with setting �

= �̃ and f = f I. Choosing either C̃=CE or C̃=CI, the method degen-
erates to the interior homogenization Eq. �73� or the exterior ho-

mogenization Eq. �76�, respectively. If we let C̃ assume a value

between CI and CE, the effective modulus C̄ given by the dual
eigenstrain method can be expected to lie in between these two
special cases. As an example consider the convex combination

C̃ = aCI + �1 − a�CE, 0 � a � 1 �86�

Figure 6�a� shows the effective shear modulus �̄ obtained from
Eq. �83� using Eq. �86� for a= �0,0.2,0.4,0.6,0.8,1�.

The material properties have been chosen as before ��I=4�E,
�I=10�E, and �E=0.3�. The boundary condition in Fig. 6�a� is
chosen as the Dirichlet BC ��=D�. We observe that �̄, computed

Fig. 5 Mori–Tanaka homogenization for the interior and exte-
rior eigenstrain methods

Fig. 6 Effective shear modulus for: „a… C̃=aCI+ „1−a…CE, and „b…
C̃= C̄
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by the dual eigenstrain method, lies in between the two special
cases, the interior and exterior eigenstrain MT method obtained
for a=0 and a=1, respectively. We remark that there are other

interesting choices for C̃ to consider �see Ref. �12��. For instance,

we can use C̃ as a predictor of the effective modulus C̄. One such
predictor is the Voigt bound. Equation �83� then becomes a cor-

rected value for C̄. This predictor–corrector scheme can be viewed
as a generalization of the classical self-consistent method. An im-

plicit self-consistent method arises when considering C̃= C̄ in Eq.
�83�. The effective shear modulus for this case is shown in Fig.
6�b� for both �=D and N. For comparison the original self-
consistent method is also shown. The material data are the same
as before.

As a final remark, let us consider the dual eigenstrain method in
view of the two possible ways of arranging the material phases.
As we have discussed in the preceding section we can either have
CE=C1 and CI=C2 or the flipped case CI=C1 and CE=C2. Thus the
dual eigenstrain method Eq. �83� results in two distinct formulas.

5 A Shell Model
To utilize the finite Eshelby tensors to represent different mi-

crostructures, a so-called spherical shell model is developed, that
is a n-phase composite RVE modeled by n concentric spherical
shells. To illustrate the model, we present the detailed study of a
three-layer shell model �see Fig. 7�.

For the three-layer shell model, the RVE consists of three con-
centric spherical shells, which are labeled as

�1�x� = �x��x� � r1�, �2�x� = �x�r1 � �x� � r2� ,

�3�x� = �x�r2 � �x� � r3�

Here the radius of the RVE is r3, and the volume fraction of the
three shells are

f1 =  r1

r3
�3

, f2 =
r2

3 − r1
3

r3
3 , f3 =

r3
3 − r2

3

r3
3 �87�

with

f1 + f2 + f3 = 1

To derive the Eshelby tensors for each shell, we consider three
partially overlapped concentric spheres

�I�x� = �x��x� � r1�, �II�x� = �x��x� � r2�, �III�x� = �x��x� � r3�

The interior and exterior Eshelby tensors for each sphere �J are
denoted as

SJ,F�x� ª � SI,F�x� , ∀x � �J, J = I,II,III

SE,F�x� , ∀x � �/�J, J = I,II,III
� �88�

where the superscript F represents the general boundary condi-
tions, see Eq. �39�. Subsequently the average of the Eshelby ten-
sor is required for each shell. We first denote the average of the
Eshelby tensor of the overlapping spheres

SJj,F
ª �SJ,F��j

, J = I,II,III and j = 1,2,3 �89�

where the first superscript J �Roman numbers� denotes the sphere,
�J, in which the eigenstrain is prescribed, and where the second
superscript j �Arabic numbers� denotes the shell, � j, over which
the average is taken. Similarly we denote the average Eshelby
tensor of the shell domains as

Sij,F
ª �Si,F��j

, i = 1,2,3 and j = 1,2,3 �90�

Again, the first subscript index, i, refers to the shell region, �i, in
which the eigenstrains are prescribed, and the second index, j,
denotes the shell region, � j, over which the average is taken. As
we have shown in Sec. 2 the average Eshelby tensors can be
written as

Sij,F = s1
ij,FE�1� + sij,FE�2�, i, j = 1,2,3 �91�

The idea is to use the Eshelby tensors of three overlapping
spheres to represent the Eshelby tensors of the shells via superpo-
sition. For the first spherical shell �the inner most shell� we write

S11,F = SI1,F = s1
11,FE�1� + s2

11,FE�2�

S1j,F = SIj,F = s1
1j,FE�1� + s2

1j,FE�2� �92�

Here, s
11,F are the coefficients of the interior Eshelby tensor,

whereas s
1j,F, j=2,3 are the coefficients of the exterior Eshelby

tensors. Using superposition, the Eshelby tensors for the second
and third spherical shells can be obtained by using the combina-
tion of the average Eshelby tensors of the three overlapping
spheres

S2i,F = SIIi,F − SIi,F, i = 1,2,3 �93�

S3i,F = SIIIi,F − SIIi,F, i = 1,2,3 �94�

Therefore, for =1,2

s
2i,F = s

IIi,F − s
Ii,F

and

s
3i,F = s

IIIi,F − s
IIi,F, i = 1,2,3 �95�

To this end, all the coefficients of the Eshelby tensors for each
shell layer are expressed in terms the of the Eshelby coefficients
for solid spheres, �I, �II, and �III, which are documented in the
Appendix for a three-sphere RVE.

To illustrate the application of the shell model, we consider a
simple homogenization example of a two-phase composite mate-
rial, with elastic modulus C2=Ce in �2 and C1=C3=C in �1 and
�3. We prescribe the eigenstrain in �2,

�*�x� = ��*, ∀x � �2

0, otherwise
� �96�

We assume the RVE is subjected to the macrostrain boundary
condition, i.e., u=�0x, ∀x��� and impose the following stress
consistency condition

Ce:��0 + �d� = C:��0 + �d − �*�, ∀ x � �2 �97�

One can then derive the effective elastic stiffness similar to the
formula of dilute suspension homogenization Eq. �35�

C̄ = C − fC:�Ae − S22,D�−1, �98�

where Ae= �C−Ce�−1 :C. We note that here S22,D is a function of
both volume fraction of the second phase �2 �i.e., f = f2�, and the
geometric allocation or separation of the first phase, which can be
characterized by a nondimensional parameter �ª f1 / �f1+ f3�
= f1 / �1− f�. The coefficients of S22,D are found to be

s1
22,D =

�1 + ���1 − f�
3�1 − ��

�99�

Fig. 7 A three-layer shell model
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s2
22,D =

8 − 10�

15�1 − ��
�1 − ���1 − f� − 21�u���1 − f� + f� · �1

−
���1 − f� + f�5/3 − ���1 − f��5/3

f
� +

2��1 − f�
15�1 − ��

+ 21�u���1

− f��
f − ��1 − f� − ���1 − f� + f�5/3 + ���1 − f��5/3

f − ��1 − f�
�100�

For the general boundary condition of Eq. �39�, the following
stress consistency is imposed

Ce:��b + �d� = C:��b + �d − �*�, ∀ x � �2 �101�

This leads to the usual relationships between the average strain
and eigenstrain, as well as between the eigenstrain and the back-
ground strain, i.e.

����2
= Ae:�

* �102�

and

�* = �Ae − S22,F�:�b, with Ae = �C − Ce�−1:C

Then the average strain in the RVE will be

���� = f1����1
+ f2����2

+ f3����3

= �b + f1S
21,F:�* + f2S

22,F:�* + f3S
23,F:�*

= �Ae + f1S
21,F − �f1 + f3�S22,F + f3S

23,F�:�Ae − S22,F�−1:�b

�103�
Further, the average stress in the RVE becomes

���� = f1����1
+ f2����2

+ f3����3
= ��f1C + f2Ce + f3C�:�Ae

− S22,F� + �C�f1S
21,F + f3S

23,F� + f2CeS
22,F��:�Ae

− S22,F�−1:�b �104�

Substituting Eq. �103� into Eq. �104� leads to the effective elastic
tensor

C̄ = C − fC:�Ae − �1 − f��S22,F − �S21,F − �1 − ��S23,F��−1,

�105�

where f = f2 and

� =
f1

f1 + f3
=

f1

1 − f

It is interesting to point out that the above formalism resembles
the classical Mori–Tanaka model Eq. �54�. For the shell model
with the eigenstrain prescribed in �2, the contribution from the
exterior Eshelby tensor is represented by a linear combination of
S21,F and S23,F through parameter �� �0,1�, which can be used to
characterize the evolution of the microstructure. Figure 8 shows
that the microstructure evolution can have some influence on the
effective shear modulus. In Fig. 8�a�, the range of the effective
shear modulus for �=0,0.1, . . . ,0.9,1.0 is plotted for the Dirich-
let, Neumann, and averaged �=0.5 in Eq. �39�� boundary condi-
tions, respectively. The differences can be seen more clearly if, for
a given volume fraction, the effective modulus is plotted over �.
This is shown in Fig. 8�b� for the volume fraction f =0.5, which
demonstrates the dependency of the shell model on the micro-
structure. Note that this dependency has little influence for the
average case but is considerably stronger for both the Dirichlet
and Neumann case.

6 New Variational Bounds
One of the useful homogenization methods for composite ma-

terials are the Hashin–Shtrikman variational principles, which
have been extensively used in deriving bounds for effective ma-
terial properties. In the procedure of deriving the variational

bounds, the Eshelby tensor is needed in order to estimate the
disturbance strain field due to stress polarization or to estimate the
disturbance stress field due to the eigenstrain.

Since the classical Eshelby tensor is obtained for an inclusion
solution in an unbounded region, in principle, it can not be di-
rectly used in the derivation of the variational bounds of a com-
posite with finite volume. In the past, additional probability argu-
ments and approximations based on assumptions of the statistical
nature of the inclusion distribution, have been employed to justify
the use of the classical Eshelby tensor, e.g., Ref. �14�.

In this section, we show that the finite Eshelby tensors are a
perfect fit for the Hashin–Shtrikman variational principles �15,16�.
They can be directly used in combination with the Hashin–
Shtrikman principles to derive variational bounds without resort-
ing to additional statistical arguments. By using the shell model
proposed in the previous section, a systematic, multivariable op-
timization procedure is developed for multiphase composites.

We consider the case that the finite spherical RVE is subjected
to a displacement boundary condition, i.e.

u�x� = �0x, ∀ x � �� �106�

The standard statement of the Hashin–Shtrikman principles may
be expressed in the following form

Fig. 8 Influence of � on the effective shear modulus
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I�p�p,�d� � inf
�d�E

W��d� � Īp�p,�d� �107�

where

W��� =
1

2����
�

�:� d� �108�

is the strain energy density, and

Ip�p,�d� = W0��0� −
1

2����
�

�p:�C − C0�−1:p − p:�d − 2p:�0�d�

�109�

Here C is the elastic tensor of the composite and C0 is the elastic
tensor of a comparison solid such that

Ip = � Īp, if 
C = C − C0 � 0

I�p, if 
C = C − C0 � 0
� �110�

Here W0��0� is the strain energy density of the comparison solid;
p is the stress polarization; and �d is the disturbance strain field
due to the stress polarization. They are related by the following
subsidiary boundary value problem

� · �C0:�ud�x� + p�x�� = 0, ∀ x � �, ud�x� = 0, ∀ x � ��

�111�

We consider the composite to be made of n distinct phases and
assume that each phase may be represented by a hollow spherical
shell inside the RVE. The homogenization or statistical model of
the composite is that any macropoint of the composite is modeled
as a RVE consisting of n distinct concentric spherical shells with
domain �i so that �i

n�i=� and 	i=1
n �i=�. The stress polariza-

tion is chosen as a piecewise constant tensorial field

p�x� = �
i=1

n

pi���i�

with

���i� = �1, ∀x � �i

0, ∀x � �i
� �112�

Let us consider

pi = piI
�2� + �iJ

�2� �113�

where I�2� is the second-order unit tensor and J�2� is its counter-
part, the so-called deviatoric unit tensor, both defined as

I�2� = �ijei � e j, �ij = �1, i = j

0, i � j
� ,

J�2� = �ijei � e j, �ij = �0, i = j

1, i � j
� �114�

Based on the finite spherical inclusion model, the average distur-
bance strain will be the summation of the average disturbance
strain in each phase

��d�� = − �
i=1

n

�
j=1

n

C0
−1:�Sij,D�:pi �115�

As shown in Sec. 2, the average Eshelby tensor can be written as

�Sij,D� = s1
ij,DE�1� + s2

ij,DE�2� �116�

We choose the prescribed boundary field as

�0 = �̄I�2� + �̄J�2� �117�

so that we obtain

Ip = W0��̄� −
1

2����
�

�p:�C − C0�−1:p − p:�d − 2p:�̄�d�

=
9

2
�0�̄2 + 6�0�̄2 − �

i=1

n � f ipi
2

2��i − �0�
+

3f i�i
2

2��i − �0��
− �

i=1

n

�
j=1

n  f is1
ji,Dpipj

2�0
+

3f is2
ji,D�i� j

2�0
� + �

i=1

n

�3f ipi�̄ + 6f i�i�̄�

�118�

We first let �Ip /�pi=0. One can thus find

−
pi

�i − �0
−

s1
ii,Dpi

�0
− �

j�i

s1
ji,Dpj

2�0
+ 3�̄ = 0, ∀ i = 1,2, ¯ n

�119�

Hence the stationary value of each pi can be obtained through the
following system of equations

	
�

¯ ¯  s1
ii,D

�0
+

1

�i − �0
� ¯

s1
ji,D

2�0

¯

�

�

�


	
p1

]

pi

]

pj

]

pn


 = 3�̄	
1

]

]

1

]

]

1



�120�

We further let �Ip /��i=0, which leads to

−
3f i�i

�i − �0
−

3f is2
ii,D�i

�0
− �

j�i

3f is2
ji,D� j

2�0
+ 6f i�̄ = 0 �121�

or in matrix form

	
�

¯ ¯  s2
ii,D

�0
+

1

�i − �0
� ¯

s2
ji,D

2�0

¯

�

�

�


	
�1

]

�i

]

� j

]

�n


 = 2�̄	
1

]

]

1

]

]

1



�122�

Remark 6.1. In the past, when deriving variational bounds for
multiphase composites, the same infinite Eshelby tensor was used
for all the phases �except the comparison phase� without discrimi-
nation. This procedure excludes the interactions among different
phases at the outset. By applying the shell model, proposed in the
last section, with the finite Eshelby tensor this interaction can now
be taken into account.

6.1 Two-Phase Composites. We now consider an isotropic
two-phase composite, with �2��1 and �2��1. For the effective
bulk modulus, we find the following bound under the prescribed
displacement boundary condition

�1 +
f2

1

�2 − �1
+

s1
22,D

�1

� �̄ � �2 +
f1

1

�1 − �2
+

s1
11,D

�2

�123�

where
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s1
22,D =

�1 + �1�f1

3�1 − �1�
and

s1
11,D =

�1 + �2�f2

3�1 − �2�
�124�

A similar result can be derived for the Neumann boundary
condition

�1
−1 +

f2

1

�2
−1 − �1

−1 +
1 − s1

22,N

�1
−1

� �̄−1 � �2
−1 +

f1

1

�1
−1 − �2

−1 +
1 − s1

11,N

�2
−1

�125�
where

s1
22,N =

1 + �1 + 2�1 − 2�1�f2

3�1 − �1�
and

s1
11,N =

1 + �2 + 2�1 − 2�2�f1

3�1 − �2�
�126�

It can be shown, by algebraic manipulation, that the bounds
�123� and �125� are identical. Furthermore, they are equal to the
original Hashin–Strikman bounds, because the coefficients �124�
and �126� are equal to those of the original infinite Eshelby tensor.

Similarly, the bounds for the shear modulus can be obtained as

�1 +
f2

1

�2 − �1
+

s2
22,D

�1

� �̄ � �2 +
f1

1

�1 − �2
+

s2
11,D

�2

�127�

where

s2
22,D =

2�4 − 5�1�f1

15�1 − �1�
−

21f2�1 − f2
2/3�2

10�1 − �1��7 − 10�1�
�128�

s2
11,D =

2�4 − 5�2�f2

15�1 − �2�
−

21f1�1 − f1
2/3�2

10�1 − �2��7 − 10�2�
�129�

and

�1
−1 +

f2

1

�2
−1 − �1

−1 +
1 − s2

22,N

�1
−1

� �̄−1 � �2
−1 +

f1

1

�1
−1 − �2

−1 +
1 − s2

11,N

�2
−1

�130�
where

s2
22,N =

2�4 − 5�1� + �7 − 5�1�f2

15�1 − �1�
+

84f2
2�1 − f2

2/3�2

10�1 − �1��7 + 5�1�
�131�

s2
11,N =

2�4 − 5�2� + �7 − 5�2�f1

15�1 − �2�
+

84f1
2�1 − f1

2/3�2

10�1 − �2��7 + 5�2�
�132�

Now the shear modulus bounds �127� and �130�, are distinct, and
they are different from the original Hashin–Shtrikman bounds
based on the classical Eshelby tensor in an unbounded RVE. The
new variational bounds for both bulk and shear modulus are dis-
played in Fig. 9 with respect to f2. The material data is chosen as
�2=4�1, �2=10�1, and �1=0.3 �implying �2=0.083�.

Figure 9�a� shows that the boundary conditions have no effect
on the bulk modulus, whose bounds coincide with the original HS
bounds. On the other hand the boundary conditions do affect the
variational bounds of the shear modulus. In Fig. 9�b�, the three
sets of the variational bounds �Dirichlet, Neumann, and the origi-

nal� for the shear modulus are juxtaposed in comparison. We note
that the difference between these three pairs is solely caused by
the second term in coefficients s2

ii,D and s2
ii,N. Without the second

term in Eqs. �128�, �129�, �131�, and �132�, the three sets of
bounds will coincide.

Remark 6.2. There is a difference between material ordering,
i.e., �1��2� ¯ ��n and geometric ordering, i.e., concentric
spherical shells r1�r2� ¯ �rn. Since one does not necessarily
place the phase with the smallest material constants in the inner
most region of the RVE, the combination of mappings between
material ordering and geometric ordering is multiple. There are
differences in the homogenization results due to these different
combinations.

For a two-phase composite, there are two ways to place the
phase which is not the comparison phase in an RVE: either in the
interior of the RVE or in the exterior of the RVE. By alternating
the material phase from the interior region of the RVE to the
exterior region of the RVE, the interior homogenization becomes
the exterior homogenization, and they correspond to different fi-
nite Eshelby tensors as seen in Sec. 4. Therefore, in principle, we
can obtain for each boundary condition two distinct pairs of the
variational bounds, namely one corresponding to the interior
eigenstrain and one corresponding to the exterior eigenstrain
method �see Fig. 5 illustrating the different combinations possible
for each boundary condition�. For isotropic composites, alternat-
ing the phase position has no effect on the variational bounds for
the bulk modulus, because the bulk part of the interior eigenstrain
Eshelby tensor equals the bulk part of the exterior eigenstrain
Eshelby tensor and thus the two pairs of bounds coincide.

Fig. 9 Improved Hashin–Shtrikman bounds for the effective
bulk and shear moduli
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On the other hand, for the shear modulus, alternating the phase
position yields new variational bounds. �These are not shown in
Fig. 9 since they will only deviate slightly from the bounds shown
in the figure.� Altogether we have two pairs of distinct variational
bounds for the shear modulus under each boundary condition.

For multiphase composites �n�3�, the dependence on phase
position may become more pronounced.

6.2 Three-Phase Composites. Consider a three-phase isotro-
pic composite with �3��2��1 and �3��2��1. To obtain the
lower bound, we choose �0=�1 and p1=0. One can then solve the
stationarity condition Eq. �120� for p2 and p3

p2 = 3�̄p� 2, p� 2 =
1


�1
 s1

33,D − 0.5s1
32,D

�1
+

1

�3 − �1
� �133�

p3 = 3�̄p� 3, p� 3 =
1


�1
 s1

22,D − 0.5s1
23,D

�1
+

1

�2 − �1
� �134�

where


�1 =  s1
22,D

�1
+

1

�2 − �1
� s1

33,D

�1
+

1

�3 − �1
� −

s1
32,Ds1

23,D

4�1
2

�135�

Similarly, one can solve Eq. �120� for the stationary values of p1
and p2 for the upper bound by setting �0=�3 and p3=0, i.e.

p1 = 3�̄p̄1, p̄1 =
1


u1
 s1

22,D − 0.5s1
21,D

�3
+

1

�2 − �3
� �136�

p2 = 3�̄p̄2, p̄2 =
1


u1
 s1

11,D − 0.5s1
12,D

�3
+

1

�1 − �3
� �137�

where


u1 =  s1
11,D

�3
+

1

�1 − �3
� s1

22,D

�3
+

1

�2 − �3
� −

s1
12,Ds1

21,D

4�3
2

�138�
Substituting the stationary values Eqs. �133�, �134�, �136�, and

�137�, into the Hashin–Shtrikman variational principle Eq. �107�,
we find the explicit variational bounds of the bulk modulus for
three-phase composites

�1 − � f2p� 2
2

��2 − �1�
+

f3p� 3
2

��3 − �1�� −
1

�1
�f2p� 2

2s1
22,D + f2p� 2p� 3s1

32,D

+ f3p� 2p� 3s1
23,D + f3p� 3

2s1
33,D� + 2�f2p� 2 + f3p� 3� � �̄ � �3

− � f1p̄1
2

��1 − �3�
+

f2p̄2
2

��2 − �3�� −
1

�3
�f1p̄1

2s1
11,D + f1p̄1p̄2s1

21,D

+ f2p̄1p̄2s1
12,D + f2p̄2

2s1
22,D� + 2�f1p̄1 + f2p̄2� �139�

Similarly, for the bounds of the shear modulus we have

�1 − � f2��2
2

��2 − �1�
+

f3��3
2

��3 − �1�� −
1

�1
�f2��2

2s2
22,D + f2��2��3s2

32,D

+ f3��2��3s2
23,D + f3��3

2s2
33,D� + 2�f2��2 + f3��3� � �̄ � �3

− � f1�̄1
2

��1 − �3�
+

f2�̄2
2

��2 − �3�� −
1

�3
�f1�̄1

2s2
11,D + f1�̄1�̄2s2

21,D

+ f2�̄1�̄2s2
12,D + f2�̄2

2s2
22,D� + 2�f1�̄1 + f2�̄2� �140�

where

��2 =
1


�2
 s2

33,D − 0.5s2
32,D

�1
+

1

�3 − �1
� �141�

��3 =
1


�2
 s2

22,D − 0.5s2
23,D

�1
+

1

�2 − �1
� �142�

�̄1 =
1


u2
 s2

22,D − 0.5s2
21,D

�3
+

1

�2 − �3
� �143�

�̄2 =
1


u2
 s2

11,D − 0.5s2
12,D

�3
+

1

�1 − �3
� �144�

and


�2 =  s2
22,D

�1
+

1

�2 − �1
� s2

33,D

�1
+

1

�3 − �1
� −

s2
23,Ds2

32,D

4�1
2

�145�


u2 =  s2
11,D

�3
+

1

�1 − �3
� s2

22,D

�3
+

1

�2 − �3
� −

s2
12,Ds2

21,D

4�3
2

�146�
Figure 10 shows the variational bounds for the effective bulk

and shear modulus of a three-phase composite using the modulus
ratios �3:�2:�1=4:2:1, �3:�2:�1=10:5:1 and Poisson’s ratio �1
=0.3. The unique features of variational bounds �139� and �140�
are: �1� the boundary conditions are accurately taken into account
without resorting to any approximation and ad hoc arguments; �2�
interaction among different phases, or in other words, the correla-
tion among different phases are precisely taken into account by

Fig. 10 Variational bounds for a three-phase composite mate-
rial: „a… bounds for bulk modulus; and „b… bounds for shear
modulus.
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the cross-term Eshelby tensor Sij,D, i� j. This feature is absent in
the classical HS bounds; �3� Microstructures of the composite are
distinguished by mapping different combinations of the geometric
ordering to the material ordering. For the bounds shown in Fig.
10, the geometric ordering coincides with the material ordering in
ascending order, i.e., ��1 ,�1�⇒�1, ��2 ,�2�⇒�2, and
��3 ,�3�⇒�3.

To examine the effect of the microstructure on the variational
bounds, we exchange the material ordering within the domains �2
and �3. Figure 11�a� shows a plot of the two lower bound sur-
faces of the shear modulus. The contour of the difference is shown
in Fig. 11�b�. One can see that the maximum difference is about
0.2, demonstrating the the material ordering has little impact for
this case.

7 Closure
In this paper, the finite Eshelby tensors obtained in Part I of our

work are applied to develop various homogenization methods. It
is shown that the special features of the finite Eshelby tensors can
improve the accuracy of conventional homogenization methods
and lead to more accurate predictions on effective material prop-
erties of composites.

For instance, we have found that for two-phase composites,
there are at least two sets of Hashin–Shtrikman variational bounds
corresponding to two different boundary conditions. This discov-
ery may be instrumental for numerical homogenization proce-
dures.

Furthermore, we have developed some new homogenization
schemes such as the exterior eigenstrain method, dual eigenstrain
method, i.e., a generalized self-consistency method, the shell
model, and multiphase Hashin–Shtrikman bounds, which will en-
rich the engineering homogenization repertoire and provide
sharper estimates on effective material properties of multi-phase
composites.

The applications of the finite Eshelby tensor are multitude, and
they are not limited to applications of homogenization theory. As
indicated by the multilayer shell model, the finite Eshelby tensors
provide the basic module to construct the multi-inclusion model
and interface model, which can be used in modeling quantum
dots, nano-onions, spinodal decomposition, and functionally
graded materials. Some of these studies will be reported in sepa-
rate papers.
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Appendix: Table of the Eshelby Coefficients for the
Three-Layer Shell Model

In this Appendix, a complete list of the coefficients for the
average Eshelby tensors of a three-sphere RVE is documented.
The notation of these coefficients is explained and defined in Sec.
5

s1
I1,D =

�1 + ���1 − f1�
3�1 − ��

s1
I1,N =

�1 + �� + 2�1 − 2��f1

3�1 − ��

s2
I1,D =

2�4 − 5���1 − f1�
15�1 − ��

− 21�u�f1��1 − f1
2/3�

s2
I1,N =

2�4 − 5�� + �7 − 5��f1

15�1 − ��
+ 21�t�f1��1 − f1

2/3�

s1
I2,D = −

�1 + ��f1

3�1 − ��

s1
I2,N =

2�1 − 2��f1

3�1 − ��

s2
I2,D = −

2�4 − 5��f1

15�1 − ��
− 21�u�f1��1 −

�f1 + f2�5/3 − f1
5/3

f2
�

s2
I2,N =

�7 − 5��f1

15�1 − ��
+ 21�t�f1��1 −

�f1 + f2�5/3 − f1
5/3

f2
�

s1
I3,D = −

�1 + ��f1

3�1 − ��

s1
I3,N =

2�1 − 2��f1

3�1 − ��

s2
I3,D = −

2�4 − 5��f1

15�1 − ��
+ 21�u�f1�

�f1 + f2��1 − �f1 + f2�2/3�
f3

s2
I3,N =

�7 − 5��f1

15�1 − ��
− 21�t�f1�

�f1 + f2��1 − �f1 + f2�2/3�
f3

Fig. 11 Influence of phase position on three-phase variational
bounds
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s1
II1,D =

�1 + ��f3

3�1 − ��

s1
II1,N =

�1 + �� + 2�1 − 2���f1 + f2�
3�1 − ��

s2
II1,D =

2�4 − 5��f3

15�1 − ��
− 21�u�f1 + f2��1 − f1

2/3�

s2
II1,N =

2�4 − 5�� + �7 − 5���f1 + f2�
15�1 − ��

+ 21�t�f1 + f2��1 − f1
2/3�

s1
II2,D =

�1 + ��f3

3�1 − ��

s1
II2,N =

�1 + �� + 2�1 − 2���f1 + f2�
3�1 − ��

s2
II2,D =

2�4 − 5��
15�1 − ��

f3 − 21�u�f1 + f2��1 −
�f1 + f2�5/3 − f1

5/3

f2
�

s2
II2,N =

2�4 − 5�� + �7 − 5���f1 + f2�
15�1 − ��

+ 21�t�f1 + f2��1 −
�f1 + f2�5/3 − f1

5/3

f2
�

s1
II3,D = −

�1 + ���f1 + f2�
3�1 − ��

s1
II3,N =

2�1 − 2���f1 + f2�
3�1 − ��

s2
II3,D = −

2�4 − 5��
15�1 − ��

�f1 + f2� + 21�u�f1

+ f2�
�f1 + f2��1 − �f1 + f2�2/3�

f3

s2
II3,N =

7 − 5�

15�1 − ��
�f1 + f2� − 21�t�f1 + f2�

�f1 + f2��1 − �f1 + f2�2/3�
f3

s1
III3,D = 0

s1
III3,N = 1

s2
III3,D = 0

s2
III3,N = 1

s1
III1,D = 0

s1
III1,N = 1

s2
III1,D = 0

s2
III1,N = 1

s1
III2,D = 0

s1
III2,N = 1

s2
III2,D = 0

s2
III2,N = 1

where

�u�x� ª
x�1 − x2/3�

10�1 − ���7 − 10��
and

�t�x� ª
4x�1 − x2/3�

10�1 − ���7 + 5��
�A1�
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Stochastic Finite Element
Buckling Analysis of Laminated
Plates With Circular Cutout Under
Uniaxial Compression
A generalized stochastic buckling analysis of laminated composite plates, with and with-
out centrally located circular cutouts having random material properties, is presented
under uniaxial compressive loading. In this analysis, the layerwise plate model is used to
solve both prebuckling and buckling problems. The stochastic analysis is done based on
mean centered first-order perturbation technique. The mean buckling strength of compos-
ite plates is validated with results available in the literature. It has been observed that the
present analysis can predict buckling load accurately even for plates with large cutouts.
Micromechanics based approach is used to study the effect of variation in microlevel
constituents on the effective macrolevel properties like elastic moduli. Consequently, the
effect of uncertainty in these material properties on the buckling strength of the laminated
plates is studied. Parametric studies are carried out to see the effect of hole size, layups,
and boundary conditions on the mean and variance of plate buckling strength.
�DOI: 10.1115/1.2711230�

Keywords: stochastic buckling analysis, layerwise plate model, laminated composite
plate, centrally located cutout, random material properties

1 Introduction
Buckling behavior of laminated composite plates subjected to

in-plane loads is an important consideration in the preliminary
design of aircraft and launch vehicle components. The sizing of
many structural subcomponents of these vehicles is often deter-
mined by stability constraints. Plates with circular holes and other
openings are extensively used as structural members in aircraft
design. The buckling behavior of such plates has always received
much attention by researchers. These holes can be access holes,
holes for hardware to pass through, or in the case of fuselage,
windows and doors. In some cases holes are used to reduce the
weight of the structure. In aerospace and many other applications
these structural components are also made up of composite mate-
rial to further reduce the weight of the structure. The outstanding
mechanical properties of composite structures, such as durability
and corrosion-resistance characteristics combined with low den-
sity, make it more attractive compared to conventional materials.
The mechanical properties of composite materials depend on a
wide variety of variables at the microlevel, for example, the fiber
and matrix material properties; and fabrication variables at all
stages of the fabrication process, such as fiber volume ratio, mis-
alignment of ply orientation, fiber waviness or undulation, in-
tralamina voids, incomplete curing of resin, excess resin between
plies, and variation in ply thickness. These variables are statistical
in nature, therefore, the mechanical properties of a composite ma-
terial should be quantified probabilistically. The influence of these
microlevel variables on the macrolevel effective elastic properties
of composites has been studied both experimentally �1� and nu-
merically using various methods �2–5�. It has been reported that
the coefficient of variation �COV� in the macrolevel effective elas-
tic moduli of lamina could be up to 15% depending on the number
of microlevel random variables taken into the analysis. The varia-

tions in macrolevel effective properties ultimately lead to the
variation in the response of the structure. Mechanical problems of
such composite structures are solved by the use of one of the
following computational methodologies: the stochastic finite ele-
ment methods �SFEM� �6,7�, stochastic spectral techniques �8�, or
the Monte Carlo simulation �MCS� approach �9,10�. The present
paper applies the first order perturbation technique based stochas-
tic finite element method.

Any stochastic problem can be split into: �a� one set of mean
problem and �b� R set of random problems. These can be solved
separately to determine the mean and the variance of the response
of our interest. Here R denotes the number of primary random
variables chosen for the analysis at the macrolevel.

The first part, i.e., the mean stability analysis of plates with
cutouts has been studied by many investigators using various
methods under various inplane loadings. When a plate contains a
hole, it is known that the mean tensile strength is reduced due to
the stress concentration around the hole. However, the mean buck-
ling behavior of a plate with a hole under compressive loading is
quite different. For the mean buckling problem the accurate pre-
buckled stresses must first be found, and then the stability of the
plate in the presence of the prebuckled stresses studied. The
former problem is an in-plane problem, like the tensile problem,
and mainly involves in-plane stiffness. The stability problem,
however, involves both in-plane and out-of-plane effects, in par-
ticular, bending stiffness. Thus the mechanics of the mean buck-
ling problem is much more complicated than the mechanics of the
tensile problem. Numerical investigation of buckling behavior of
both isotropic and composite plates with centrally located cutouts
have been studied by various methods and plate models using the
finite element method �11–16�. The effect of various shape of
cutout like, square, circular, elliptical, its location �eccentricity�,
and the size of cutout on the mean buckling load has also been
reported in Refs. �17–20�. There are also few researchers who
have investigated the mean buckling behavior of composite plates
experimentally �13,14,20,21�.

The second part, i.e., the statistics of buckling load of compos-
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ite plates has not been given much attention by researchers. How-
ever, there are few studies which talk about the statistics of buck-
ling load of composite plates without hole �22–25�. The material
properties, fiber angles, laminate thickness, and different in-plane
random loads are treated as basic random variables �BRVs�. Both
SFEM and MCS have been used to quantify the structural re-
sponse uncertainty. An overview of different stochastic methods
has been presented for solving classical problems of solid me-
chanics in Ref. �26� with an elementary illustration of the pertur-
bation based stochastic finite element method. It has also been
shown that the MCS method is the most general approach and can
be applied to solve any stochastic problem. However, a drawback
of the method is that it requires solution of a large set of deter-
ministic problems corresponding to generated samples of the dif-
ferential operator and input. The effect of uncertainty in the initial
geometric imperfections �like radius, thickness� becomes impor-
tant in the stochastic buckling analysis of shells. The stochastic
finite element analysis of shell structures without any cutout has
been performed for both uncertain material and geometric proper-
ties in conjunction with MCS to obtain the response variability
�27,28�. These properties were assumed to be described by uncor-
related two-dimensional homogeneous stochastic fields. The buck-
ling behavior of composite plates with cutout having random ma-
terial properties has not been addressed adequately.

In this paper the variations in the macrolevel material properties
are related to the scatter in the microlevel constituent parameters.
A stochastic finite element formulation based on mean centered
first-order perturbation technique is presented for the buckling
analysis of laminated composite plates, with uncertain material
properties, having a circular cutout. The mean buckling analysis is
done by first solving the linear elastic problem to get accurate
prebuckling stresses and then these stresses are used to solve the
generalized eigenvalue problem for the lowest eigenvalue. The
Green’s strain–displacement relation is used in the formulation to
include the complete geometric nonlinearity effect. A layerwise
plate model is used to predict the state of prebuckled stresses in
the plate. This approach can be used to study any layered struc-
ture: symmetric, antisymmetric or unsymmetric. The validation of
the present mean analysis is performed by comparing the results
with those reported in the literature. The statistics of the buckling
strength is determined by considering uncertainties in the effective
material properties of composite laminates. The validation of the
buckling strength statistics for plates without cutout is performed
by comparing the results with analytical solutions based on the
Kirchhoff–Love plate model. A good agreement between the ana-
lytical and SFEM solutions has been observed for the problem
studied. Typical results for the covariance of buckling strength of
laminated plates with cutout are presented. Effects of ply orienta-
tions, layup sequences, and hole size along with change in stan-
dard deviation of material properties have also been investigated
for different boundary conditions.

2 Micromechanics Based Approach to Find Scatter in
Material Properties

The properties of composites display considerable scatter be-
cause of the uncertainties involved at many levels—properties of
the constituents, fabrication and manufacturing processes, geo-
metrical parameters of laminates, fiber orientations, volume frac-
tion, etc. It is not possible to control variations in all these param-
eters completely and thus scatter in geometric and effective
material properties is inherent. In the present study only uncertain-
ties in the effective material properties are taken, which are cal-
culated by assuming variations in the properties of the microlevel
constituents.

Let us consider the representative volume element �RVE�,
shown in Fig. 1, as a volume of the material that exhibits statisti-
cally homogeneous material properties. Further it is assumed that
the composite is periodic in a random sense, i.e., in each RVE the
variation in the microlevel material properties remain same. To
study the effect of variation in microlevel constituents, i.e., elastic
properties of fiber �Ef, � f� and matrix phase �Em, �m� and volume
concentration of fiber phase �Vf�, on the effective properties of
fiber reinforced material in a RVE, a composite cylinder model
based homogenization approach is used. The analytical expres-
sions for the effective macrolevel properties in terms of the mi-
crolevel properties for perfectly bonded thin orthotropic or trans-
versly isotropic layers have been adopted from Ref. �29�. A first-
order perturbation technique is used to study the effect of scatter
in microlevel constituents on the variations in the macrolevel ef-
fective elastic moduli. Table 1 brings out the influence of 5%
COV in all five basic microlevel constituents, namely Ef, � f, Em,
�m, and Vf, changing simultaneously on COV in the effective
moduli of various fiber-reinforced composite systems. In the
present investigation, four different composite systems: graphite–,
boron–, carbon–, and glass–epoxy, are chosen. From the table it is
observed that:

1. The COV in Ell is found to be �7% for all types of com-
posite systems; and

2. The COV in Glt is found to be a maximum of �12%,
whereas Gtt has minimum variation of �3%. The variation
in Ett, �lt, and �tt is found to be �4%.

These variations in the effective macrolevel properties will finally
lead to variation in the buckling load of the system which is dis-
cussed in the next section. Based on the experimental results �23�

Fig. 1 Periodic fiber reinforced composite

Table 1 Effect of COV of 5% in all microlevel properties changing simultaneously on the various macrolevel effective material
properties for different composite systems

Different
composite
system

COV in macrolevel effective material properties
�%�

Ell Ett �lt �tt Glt Gtt

Graphite–epoxy 6.97 3.88 3.42 3.30 11.68 2.68
Boron epoxy 7.00 3.95 3.38 3.42 11.92 2.69
Carbon–epoxy 6.96 3.92 3.39 3.40 11.59 2.68
Glass–epoxy 6.72 3.71 3.42 3.26 10.22 2.62
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it will further be assumed that there are no spatial variations in the
effective moduli.

3 Stochastic Finite Element Buckling Formulation
A rectangular composite laminated plate, having a centrally lo-

cated cutout, with its coordinate definitions and material direction
of a typical lamina are shown in Fig. 2. It is assumed that the
laminated plate is composed of perfectly bonded thin orthotropic
�or transversely isotropic� layers. Due to the applied in-plane
loads, the Green’s strain produced can be represented as

��� = ��L� + ��NL�; �ij
L =

1

2
� �ui

�xj
+

�uj

�xi
	 �1�

and

�ij
NL =

1

2
� �uk

�xi

�uk

�xj
	 �i, j,k = 1,2,3�

where ��L� and ��NL� are the linear and the geometric nonlinear
strain, respectively; and ui is the components of displacement
fields.

Buckling can be modeled as a linearized stability analysis of the
geometrically nonlinear elasticity problem by assuming that the
prebuckling deformations are small. In the present formulation the
plate is assumed to be linearly elastic with a stochastic elasticity
tensor field Cijkl. Let the plate with random material properties be
subjected to reference in-plane load qi

ref. The total potential energy
corresponding to the linear state of the system for uncertain stiff-
ness can be written as �6�

��uref� =
1

2

�

Cijkl�ij
ref�kl

refd� −

�1

qi
refui

ref d�1 �i, j,k,l = 1,2,3�

�2�

where � denotes the undeformed configuration of the plate and its
boundary is denoted by �=�0��1. �0 denotes the Dirichlet part
and �1 denotes the Neumann part of the lateral boundary of the
plate. �ij

ref denotes the linear strain tensor defined by Eq. �1� and
qi

ref is the boundary traction. In the present analysis the reference
loads q1

ref=qref and q2
ref=q3

ref=0 are taken.
The exact solution minimizes � on the set of all kinematically

admissible functions denoted by V, i.e., u�V such that V= �u
�H1��� :M�u�=0 on �0�. This yields

���uref� =

�

Cijkl�ij
ref��kl

ref d� −

�1

qi
ref�ui

ref d�1

= 0 �i, j,k,l = 1,2,3� �3�

Using Taylor series expansion based perturbation approach, the
zeroth- and first-order equations can be written as follows �6�:

zeroth order



�

Cijkl
0 �ij

0�ref���kl
0�ref� d�

=

�1

qi
0�ref��ui

0�ref� d�1 �i, j,k,l = 1, . . . ,3� �4a�

first order



�

Cijkl
0 �ij

,r�ref���kl
0�ref� d�

=

�1

qi
,r�ref��ui

0�ref� d�1 −

�

Cijkl
,r �ij

0�ref���kl
0�ref� d�

�i, j,k,l = 1, . . . ,3;r = 1,2, . . . ,R� �4b�

where R is the number of BRVs chosen for the analysis.
Having solved Eq. �3�, for linear displacements ui

ref due to the
reference load qref �taken equal to unity�, we look for buckling
load parameter � such that the system goes to a new equilibrium
position. Among all � the critical or minimum value of the load
parameter is denoted by �cr �with total load qcr=�cr qref�. From
this equilibrium position, we perturb the system by an amount ui

p

�with strain �ij
p � such that the system retains the new position of

equilibrium �neutral stability�. The total potential energy of the
perturbed system can be written as

��up� =

�

�ij
cr�ij

p d� +
1

2

�

�ij
p�ij

p d�

−

�1

qi
crui

p d�1 �i, j = 1,2,3� �5�

where �ij
cr is the current linear state of stress �prebuckled� due to

Fig. 2 Geometry of a laminated composite plate with centrally located cutout
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the critical load qcr, and is given by �ij
cr=�cr �ij

ref. Upon substitut-
ing the perturbational strain �ij

p from Eq. �1� and linearizing the
above equation, we arrive at the following expression

��up� =
1

2

�

Cijkl�ij
L�p��kl

L�p� d�

+ �cr

�

�ij
ref�ij

NL�p� d� �i, j,k,l = 1,2,3� �6�

where �kl
L�p� is the linear part and �kl

NL�p� is the nonlinear part of the
perturbational strain �kl

p . Now we find �cr and u�V, u�0 such
that � is minimum. This yields

���up� =

�

Cijkl�ij
L�p���kl

L�p� d� + �cr

�

�ij
ref��ij

NL�p� d�

= 0 �i, j,k,l = 1,2,3� �7�
The stochastic finite element based buckling analysis of com-

posite plates having random material properties is preformed
based on mean-centered first-order perturbation technique. The
zeroth- and first-order variational relations are obtained from the
above equation using Taylor series expansion based stochastic
variational principles as �6�:

zeroth order



�

Cijkl
0 �ij

0�L���kl
0�L� d� + �cr

0

�

�ij
0�ref���ij

0�NL� d�

= 0 �i, j,k,l = 1,2,3� �8a�
first order



�

�Cijkl
,r �ij

0�L� + Cijkl
0 �ij

,r�L����kl
0�L� d� + �cr

0

�

�ij
,r�ref���ij

0�NL� d�

+ �cr
,r


�

�ij
0�ref���ij

0�NL� d�

= 0 �i, j,k,l = 1,2,3;r = 1,2, . . . ,R� �8b�

The symbols �.�0 and �.�,r represent the value of the function and
its first-order partial derivative with respect to the BRVs, respec-
tively, evaluated at the mean value of the BRVs. The superscript p
has been dropped from the above equations for the sake of brevity.

3.1 Discretization. In the present layerwise finite element dis-
cretization of the laminated plate, in addition to the in-plane mesh
�x1−x2 plane�, discretization into solution layers along the thick-
ness direction �x3� is also performed. Hence the displacement field
at any point in the laminate using layerwise plate model is written
as �30�

u1�x1,x2,x3� = UijNi�x1,x2�Nj�x3�
u2�x1,x2,x3� = VijNi�x1,x2�Nj�x3�
u3�x1,x2,x3� = WijNi�x1,x2�Nj�x3�

�i = 1, . . . ,nx1x2
; j = 1,2, . . . ,nx3

� �9�

where nx3
=nslay	 px3

+1; px3
denotes the order of approximation

in the thickness direction. Here nslay is the total number of solu-
tion layers in the laminate. A solution layer, herein, means an
entity generated by discretizing the plate along thickness direc-
tion, and may not necessarily represent a physical �or material�
layer. It may represent a subdivision of a physical layer into sub-
laminae or consist of number of physical layers lumped into a
single solution layer termed as equivalent solution layer �see Figs.
3�a� and 3�b��. Mi�x1 ,x2� and Nj�x3� are the two-dimensional �2D�
and �1D� Legendre shape functions and Uij, Vij, and Wij are the
coefficients of the displacement components. nx1x2

is the total
number of degrees of freedoms in the x1-x2 plane. Note that nx1x2
depends on the order of the in-plane approximation, px1x2

, and the
in-plane mesh. If Nj�x3� is defined over the thickness of the lami-
nate �i.e., nx3

= px3
+1�, the model of Eq. �9� reduces to an “equiva-

lent layer” model, i.e., the transverse functions are taken to be
smooth polynomials in terms of x3 over all the laminae, as shown
in Fig. 3�a�. Here we have taken px3

to be same for u1, u2, and u3.
This is because the buckling problem has both the membrane �the
pre-
buckled stress due to in-plane loading� and the bending effect �the
buckled mode�. To resolve both these effects the transverse order
of approximation should be same for all the displacement compo-
nents �31�. Note that generally the membrane effect is ignored and
the buckling analysis is done using an approximation suitable for
bending effect only.

Upon substituting the above finite element approximation into
Eqs. �8a� and �8b� and by employing nonlinear Green’s strain–
displacement relationships the discretized finite element system
equations are:

zeroth order

�Kij
0 + �k

0Kij
�G�0�
 j

k�0� = 0 �i, j,k = 1,2, . . . ,n; no sum over k�
�10a�

first order

�Kij
0 + �k

0Kij
�G�0�
 j

k,r + �Kij
,r + �k

0Kij
�G�,r + �k

,rKij
�G�0�
 j

k�0�

= 0 �i, j,k = 1,2, . . . ,n;r = 1,2, . . . ,R; no sum overk�
�10b�

Kij
0 and Kij

�G�0are the mean elastic and geometric stiffness matrices
of the structure, respectively. Correspondingly Kij

,r and Kij
�G�,r are

the first-order partial derivative of elastic and geometric stiffness

Fig. 3 Representation of transverse function over the thickness of plate: „a… equivalent layer;
and „b… layer by layer
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matrix, respectively, with respect to the rth BRV. 
 j
k�0� and 
 j

k,r

represent the kth mean eigenvector and its first-order partial de-
rivatives, having components �Ulm

0 , Vlm
0 , Wlm

0 � and �Ulm
,r , Vlm

,r , Wlm
,r �,

respectively. It may be noted that �cr
0 is the minimum among all

�i
0.
The zeroth-order equation �Eq. �10a�� is a generalized eigen-

value problem which is solved to get the mean critical buckling
load of the system. To obtain the statistics of the critical buckling
load, we premultiply both sides of Eq. �10b� by the mean eigen-
vector 
i

0 obtained from Eq. �10a� for minimum mean eigenvalue
�cr

0 . This gives


i
0�Kij

0 + �cr
0 Kij

�G�0�
i
,r = − �cr

,r�
i
0Kij

�G�0
 j
0� − 
i

0�Kij
,r + �cr

0 Kij
�G�,r�
 j

0

�11�

Since both Kij
0 and Kij

�G�0are symmetric, the left hand side equals
zero by the definition of the zeroth-order equation. By employing
Kij

�G�0 orthonormality conditions, the first term on the right hand
side equation reduces to �cr

,r . The expression for the first-order
eigenvalue then takes the following form

�cr
,r = − 
i

0�Kij
,r + �cr

0 Kij
�G�,r�
 j

0 �i, j = 1,2, . . . ,n;r = 1,2, . . . ,R�
�12�

It may be noted again that the eigenvector in the above expression
is Kij

�G�0 orthonormal.
The total minimum eigenvalue or load parameter can be written

as

�cr�br� = �cr
0 �br

0� + �cr
,r�br

0��br − br
0� �r = 1,2, . . . ,R� �13�

The second-order statistics of the eigenvalue can be evaluated by
first squaring and then taking expectation of the above equation.
The statistics of buckling load can be obtained by multiplying the
statistics of the critical load parameter with the reference load.

4 Analytical Approach for Specially Orthotropic
Plates Without Cutout

As mentioned earlier, the stochastic buckling analysis of plate
with cutout is not available in the literature. Hence, an analytical
approach is being developed for a simplified case of laminated
plates without cutout to validate the present stochastic formula-
tion. However, the mean buckling analysis, being the same as the
deterministic analysis, is also validated with analytical results
available in the literature.

Suppose a specially orthotropic rectangular laminate, which has
a single or multiple specially orthotropic layers that are symmetri-
cally arranged about the middle surface, is subjected to in-plane
compressive loading. By assuming the prebuckled stress to be
uniform throughout the plate and equal to the applied load, we get
only one uncoupled differential equation. Based on Kirchhoff–
Love plate theory, the buckling differential equation for such
plates can be written as �32�

D11
�4u3

�x1
4 + 2�D12 + 2D66�

�4u3

�x1
2 � x2

2 + D22
�4u3

�x2
4 + N̄

�2u3

�x1
2 = 0

�14�
The following admissible function, which satisfies the simply sup-
port boundary condition on all edges of the plate �with edges free
to move in their respective in-plane normal directions�, is used

u3 = Umn sin
m�x1

a
sin

n�x2

b
�m,n = 1,2, . . . , � � �15�

where Umn are the maximum displacements in x1 and x2 directions
for a particular value of �m ,n�. Here m and n are the number of
buckle half-wavelengths in the x1 and x2 directions, respectively.
After substituting the above expression into Eq. �14� we get the
expression for buckling load as

N̄ = �2�D11�m

a
2

+ 2�D12 + 2D66��n

b
2

+ D22�n

b
4� a

m
2�

�16�

The smallest or critical value of N̄ obviously occurs when n=1.
To quantify the statistics of the critical buckling load, a mean

centered first-order perturbation approach is adopted. It is as-
sumed that all effective material properties of each lamina are
random and uncorrelated to each other and the dispersion in each
component about its mean value is small. Based on Taylor series
expansion of the involved random terms in Eq. �16�, we arrive at
the following equations:

zeroth order

N̄cr
0 = �2�D11

0 �m2

a2  + � 2

b2�D12
0 + 2D66

0 �

+ D22
0 � a2

m2b4� �m = 1,2, . . . , � � �17a�

first order

N̄cr
,r = �2�D11

,r �m2

a2  + � 2

b2�D12
,r + 2D66

,r �

+ D22
,r � a2

m2b4� �m = 1,2, . . . , � ;r = 1,2, . . . ,R�

�17b�
The zeroth-order equation �Eq. �17a�� gives the mean critical
buckling load. Subsequently, the expression for its variance can be
expressed as

Var�N̄cr� = E��N̄cr
,r�br

0��br − br
0��2� �r = 1,2, . . . ,R� �18�

5 Results and Discussion
The layerwise based stochastic finite element model described

in the previous section is used to illustrate the buckling behavior
statistics of symmetric composite laminated plates with cutouts.
However, the method has no limitation and can be used for any
layup sequences. In this section, first some of the mean prebuck-
led behavior characteristics of the compression loaded square
laminated plates with cutouts are discussed. These brief discus-
sions are intended to provide insight into composite plate behav-
ior. Next, the mean buckling behavior of plates with cutouts is
described. The effect of randomness in the material properties on
the buckling load of plates with cutout is also investigated. The
present solutions for mean and variance of buckling load of plates
are verified with available results in the literature. The conver-
gence study of finite element solution is done for plates with all
cutout sizes employed. The analysis is performed using equivalent
layer model with px1x2

=3 and px3
=3. Three different boundary

conditions SSSS, SCSC, and SFSF, as described in Table 2, are
used. It may be noted that the boundary conditions of loaded
edges are always kept as simple support while the boundary con-
ditions of unloaded edges are changed.

5.1 Mean Prebuckled Stress. In this section four layered
symmetric laminated plates � /− /− /�, where  changes from
0 deg to 90 deg, is taken to demonstrate the mean prebuckled

Table 2 Three different boundary conditions

Boundary condition At x1=0 and x1=a At x2=0 and x2=b

SSSS u2=u3=0 u1=u3=0
SCSC u2=u3=0 u1=u2=u3=0
SFSF u2=u3=0 u1=u2=u3�0
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stresses of composite laminated plates with circular hole under
uniaxial compression. The effect of boundary conditions on the
prebuckled stress intensity �̄ij = ��ij /qref� is also obtained. Al-
though all the six components of stresses exist in the plate under
uniaxial compressive loading, band plots of the prebuckled stress
distribution are drawn only for in-plane stress �11 at the bottom
face of the plates for some representative cases.

Results have been presented for a graphite/epoxy square lami-
nated plate of width 50 mm and b /h=50 with following mean
material properties

Ell = 40Ett, Glt = 0.6Ett, Gtt = 0.5Ett,

�lt = �tt = 0.25, Ett = 10 GPa

Figures 4�a�–4�g� show the distribution of stress intensity �̄11
across the area of plate, with a centrally located hole of d /b
=0.2, under inplane compression having SSSS boundary condi-
tion. Here seven different layups, by taking =0 deg, 15 deg,
30 deg, 45 deg, 60 deg, 75 deg, and 90 deg, are chosen to see the
effect of ply orientation on the prebuckled stress distribution. It is
observed that:

1. The stress distribution for 0 deg laminates is almost uniform
through out the plate except near the hole where a very high
stress concentration exists compared to the other laminates;

2. For =15 deg and 30 deg the stress pattern is symmetric
along the fiber axis;

3. Stress is significant near the boundary of plate for 
=45 deg as compared to that for =0 deg, 15 deg, and
30 deg. Stress concentration near the hole is also found to be
less as compared to =0 deg, 15 deg, and 30 deg;

4. The stress near the boundary becomes more significant for
plates with =60 deg and 75 deg. Stress concentration near
the hole is found to be much less, in this case, as compared
to other laminates;

5. For =60 deg, the tensile stress is found to be much higher
as compared to the compressive stress. This increase in ten-
sile stress increases the prebuckling stiffness of the plates;
and

6. For plates with =90 deg, the stress distribution is found to
be uniform through the plates except near the hole where a
low stress concentration exists.

The intensity of stress depends on both boundary constraints and
ply orientations. For these particular plates, the prebuckling stiff-
ness can be higher for =45 deg, 60 deg, and 75 deg as compared
to the plates with other ply orientations. It is also observed that
plates with SCSC boundary constraint �figure not shown� have
generally higher prebuckling stiffness as compared to SSSS
plates. However, for plates with =60 deg, this stiffening is found
to be less prominent as compared to the stiffening effect coming
from the tensile stress developed in the laminates due to SSSS
boundary condition. In the case of plates with SFSF boundary
condition �figure not shown�, free edges do not contribute to in-
crease in the prebuckling stiffness of the plates as compared to
simply supported and clamped edges. Ply orientations only play a
role in increasing the prebuckling stiffness, which is higher for
=0 deg laminates and decreases monotonically when ply orien-
tation changes from 0 deg to 90 deg. The effect of the prebuckling
stiffness on the mean buckling strength will be discussed in Sec.
5.2.3.

5.2 Stochastic Buckling Load. In this section the mean and
covariance of buckling loads of laminated composite plates with
cutouts is studied using layerwise plate model based stochastic
finite element method. The verification of the results for the mean
buckling strength of laminated plates without cutouts is compared
with available analytical solutions in the literature �33�. The re-
sults for the mean buckling strength of laminated plates with cut-
outs are also compared with the experimental results of Nemeth

�13�. Second-order statistics of buckling load, evaluated using the
stochastic finite element method, is also validated with the ana-
lytical solution presented in Sec. 4. In the present analysis the
effective elastic moduli �Ell, Ett, �lt, �tt, Glt, Gtt � of the lamina are
treated as the basic random variables. The variations in these
properties are taken based on a micromechanics approach as de-
scribed earlier. It is assumed that the microlevel variations in the
material properties are uncorrelated. A parametric study is con-
ducted to see the effect of hole size, layups, and boundary con-
straints on the mean and variance of the buckling load for lami-
nated plates with cutouts.

5.2.1 Validation for Mean Buckling Load. First the mean
buckling load of plates without cutout, based on layerwise plate
model using prebuckled stresses, is compared with Reddy’s ana-
lytical results �33�. Table 3 shows the normalized mean buckling
load of two-layered antisymmetric cross-ply square laminates
with b /h=5 and 10 and having different boundary conditions. The
mean material properties used here is same as described in Sec.
5.1. The buckling load obtained using the equivalent layer �by
assuming both material layers as an equivalent solution layer�
model and using uniform prebuckled stress assumption is also
presented in the table. It is observed that:

1. The mean buckling load obtained, using uniform stress as-
sumption, along with equivalent single layer model, lies be-
tween the values obtained using FSDT and HSDT �33�. CPT
grossly overpredicts the buckling load;

2. The conventional 2D plate models overpredict buckling
loads as compared to those obtained with the layerwise plate
model; and

3. The differences in the buckling load obtained from the
present layerwise model �with actual prebuckled stress� and
the conventional HSDT plate model �33� are found to be
more significant for the SCSC boundary condition compared
to SSSS and SFSF boundary conditions. This is due to the
increased effect of the boundary constraint in the case of
SCSC boundary condition compared to the other two bound-
ary conditions.

The difference between the present and the conventional plate
solutions is significant because the uniform stress assumption ne-
glects all other in-plane and out-of-plane stresses which are sig-
nificant for thick plates.

The present mean buckling load for plates with cutout is also
compared with experimental results of Nemeth �13�. Following
Ref. �13�, results are obtained for a 24 layered symmetric angle
ply laminate of size 254	254 mm, with a centrally located cutout
and the following mean material properties

Ell = 127.8 GPa, Ett = 11 GPa, Glt = Gtt = 5.7 GPa,

�lt = �tt = 0.35, tply = 0.127 mm

Table 4 shows a comparison of the mean buckling load of
��±30 deg�6�s square laminate with centrally located cutout of dif-
ferent sizes. From the table it is observed that:

1. The present mean buckling load for plates with CSSS
boundary condition is close to those obtained by Nemeth
with hole of size d /b�0.316. The present analysis gives
slightly lower buckling load because CSSS plates are less
stiff compared to CSCS plates;

2. The % difference in the buckling load obtained from the
present analysis and the experimental results increases for
plates with hole of size d /b�0.6;

3. The present mean buckling load for plates with CCSC
boundary condition is also found to be close to those ob-
tained by Nemeth with a hole of d /b�0.316; and
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Fig. 4 Distribution of the intensity of stress „�̄11… for †� /−� /−� /�‡ square plates with SSSS
boundary condition and having different ply orientation: „a… 0 deg; „b… 15 deg; „c… 30 deg;
„d… 45 deg; „e… 60 deg; „f… 75 deg; and „g… 90 deg
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4. For hole size of d /b�0.6, the present mean buckling load
for plates with CCSC boundary condition are close to the
experimental one.

Remark. In Ref. �13� the boundary conditions are given as CSCS,
with the loaded edges clamped. Physically and numerically this
can not be simulated. In the present investigation, the applied
boundary conditions are more appropriately modeled using the
CCSC for which the difference with the experimental results is
�19%. However, when a softer boundary condition CSSS is used
the discrepancy between the two results goes to �40% in some
cases.

5.2.2 Validation for Statistics of Buckling Load. In order to
validate the SFEM implementation, the statistics of the buckling
load obtained using a layerwise plate model is validated with the
analytical solutions described in Sec. 4. As analytical solution of
buckling of composite plate with cutout is generally not possible;
only plates without cutout are taken to validate the statistics of
buckling load with the closed form solutions. Table 5 shows the
effect of variation in the material properties, by adopting COV for
Ell, Ett, �lt, �tt, Glt, and Gtt as 7%, 4%, 4%, 4%, 12%, and 3%,
respectively, as obtained in Sec. 2, on the buckling load for a thin
single layered orthotropic plate with b /h=100 and having SSSS
boundary conditions. The effect of both prebuckled stress and
uniform stress assumption on the statistics of buckling load pa-
rameter is shown. From the table it is observed that:

1. The standard deviation �SD� of buckling load obtained using

the layerwise model by assuming uniform state of stress is
very close to the analytical results;

2. Stochastic analysis based on uniform stress assumption pre-
dicts lower SD of buckling load as compared to that based
on prebuckled stress analysis; and

3. The difference between the SD of buckling load using both
assumptions becomes more significant as the aspect ratio of
the plate increases.

The layerwise plate model, using uniform stress assumption, gives
slightly lower SD of buckling load compared to the closed form
value because this model is less stiff as compared to the
Kirchhoff–Love model. This validates the SFEM implementation
of the present study.

5.2.3 Mean Buckling Load. Figures 5�a�–5�c� show the effect
of hole size �d /b� on the mean buckling load of four layered
square symmetric laminated plate � /− /− /� of width 50 mm
and b /h=50 having SSSS, SCSC, and SFSF boundary conditions,
respectively. Seven different layups, with  ranging from 0 deg to
90 deg; as defined in Sec. 5.1, are chosen to see the effect of ply
orientation on the mean buckling load. It is observed that:

1. The mean buckling load of plates with =0 deg and 15 deg,
under both SSSS and SCSC boundary conditions, decreases
monotonically with increase in cutout size. This is because
the stress concentration �in the presence of the cutout� near
the hole increases with increase in cutout size which results

Table 3 Comparison of nondimensioned mean buckling load for †0 deg/90 deg‡ square laminates without cutout having different
thickness ratios and support conditions

Normalized mean buckling load N�=�0
crb2 / �Etth

3�

Present result

Using prebuckled
stress �layer by layer�

using uniform stress
�equivalent layer�

Reddya result
�various 2D plate model�

Various
boundary
conditions b /h=5 b /h=10 b /h=5 b /h=10 b /h=5 b /h=10

SSSS 7.874 11.070 8.473 11.525 8.769 �HSDT� 11.562 �HSDT�
8.277 �FSDT� 11.353 �FSDT�
12.957 �CPT� 12.957 �CPT�

SCSC 8.945 18.746 10.652 20.825 11.490 �HSDT� 21.464 �HSDT�
9.757 �FSDT� 20.067 �FSDT�
31.280 �CPT� 31.280 �CPT�

SFSF 3.32 4.625 3.813 4.931 3.905 �HSDT� 4.940 �HSDT�
3.682 �FSDT� 4.851 �FSDT�
5.425 �CPT� 5.425 �CPT�

aSee Ref. �33�.

Table 4 Comparison of mean buckling load for †„±30 deg…6‡s square laminates with central
located circular cutout having different support conditions

Present mean buckling load
�kN�

Hole size
�d /b�

Nemetha

experiment
result
�kN� CSSS plate % difference CCSC plate % difference

0.00 42.894 38.5695 −10.0818 47.3220 10.3230
0.105 40.510 38.1292 −5.8770 46.8968 13.6188
0.316 37.668 35.5696 −5.5707 45.0000 19.4648
0.60 38.686 25.7490 −33.4410 36.9539 −4.4770
0.66 38.922 23.2350 −40.3036 34.5836 −11.1464

aSee Ref. �13�.
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in monotonic reduction in prebuckling stiffness of plates.
2. The mean buckling load of 45 deg, 60 deg, and 75 deg

plates, under SSSS boundary conditions, is found to be
higher than the 0 deg, 15 deg, 30 deg, and 90 deg plates for
all hole sizes considered. For these plates boundary con-
straints play a significant role and increase the prebuckling
stiffness of the plate as discussed in Sec. 5.1. As a result the
intensity �̄11 is found to be significant near the boundary and
less significant toward the middle of the plate. Since edges
are constrained, this stress increase near the edges may
cause the plate to sustain higher buckling loads.

3. The mean buckling load of plates with =60 deg and
75 deg, under SSSS boundary conditions, increases with in-
crease in cutout size. This is because the prebuckling stiff-
ness of plates increases with increase in cutout size.

4. The mean buckling load of 90 deg plates remains uniform
with increase in hole size under SSSS boundary conditions.

This is because no significant change in the stress concen-
tration near the hole is found with increase in hole size.

5. The buckling load of solid plates with SCSC boundary con-
dition is higher than those of solid plates with SSSS bound-
ary condition for all ply orientations. This is because the
prebuckling stiffness of plates increases with SCSC bound-
ary constraints compared to plates with SSSS boundary
condition.

6. SCSC boundary condition does not play any significant role
in increasing the prebuckling stiffness of plates in the pres-
ence of a cutout as opposed to plates with SSSS boundary
condition.

7. The buckling loads of SCSC plates with �30 deg remain
almost uniform with increase in cutout size. This is because
no substantial change in prebuckling stiffness is found for
such plates with increase in cutout size.

8. For plates with SFSF boundary conditions, the mean buck-
ling loads of solid plates are higher than those of the plates
with holes and it decreases monotonically with increase in
cutout size for all cases studied. This is because the stress
concentration near the hole increases with increase in cutout
size, which results in monotonic reduction in prebuckling
stiffness with increase in cutout size.

From the mean buckling loads calculated above, the smallest
value of buckling load is found for plate with =90 deg under
SFSF boundary condition and with cutout of maximum diameter
�i.e., d /b=0.6�. It can be seen that as the hole size increases, the
buckling load of 0 deg laminates is lower as compared to all other
ply orientations for plates with SSSS and SCSC boundary condi-
tions. These results suggests that for SSSS and SCSC plates,
45 deg, 60 deg, or 75 deg ply can be chosen to get the maximum
mean buckling load, whereas for SFSF plates 0 deg ply should

Table 5 Influence of dispersion in material property on the SD
of buckling load for simply supported specially orthotropic
plates with different aspect ratio and b /h=100.

SD of buckling load
�MPa�

Layerwise plate model

Aspect
ratio
�a /b�

Using
prebuckled

stress

Using
uniform

stress

Analytical
result �with

uniform stress�

1.0 0.647 0.644 0.645
2.0 0.461 0.287 0.287
3.0 0.530 0.339 0.339

Fig. 5 The effect of hole size and ply orientation on the mean critical load parameter for †� /−� /−� /�‡ square plates with
different boundary conditions: „a… SSSS; „b… SCSC; and „c… SFSF
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always be chosen to get the maximum buckling strength. Note
that the prebuckled stress state is significantly influenced by the
boundary condition, size of cutout, and ply orientation.

The above mentioned parameters also strongly influence the
mean buckling modes of plates. The first eigenmodes for plate
with hole size d /b=0.2 under SSSS boundary condition is shown
in Figs. 6�a�–6�g� for various ply orientations. It is seen that plates
with �45 deg buckle in the first mode, whereas for =60 deg
and 75 deg buckling happens in the second mode. The plate with
=90 deg is found to buckle in the third mode.

5.2.4 Variance of Buckling Load. In this subsection the effect
of variation in the effective material properties, with COV the

same as mentioned in Sec. 5.2.2, on the second-order statistics of
buckling load for composite laminated plates with cutout is pre-
sented. First the influence of individual random variables on the
COV of critical buckling load characteristics is shown in Table 6
for � /− /− /� square symmetric laminated plates with cutout
size d /b=0.1. The SSSS boundary condition is applied. From the
table it is observed that the buckling load is most sensitive to
change in Ell for all layups except for =90 deg for which Glt has
a dominant effect on critical buckling load. The effect of disper-
sion in Ett, �lt, �tt, and Gtt on the buckling load is much less
compared to Ell and Glt.

Having seen the effect of variation in individual BRV on the

Fig. 6 The first eigen modes for †� /−� /−� /�‡ square plates under SSSS boundary condition
with different, „a… 0 deg; „b… 15 deg; „c… 30 deg; „d… 45 deg; „e… 60 deg; „f… 75 deg; and „g…
90 deg

Table 6 Effect of variation of individual material properties on COV of critical buckling load for †� /−� /−� /�‡ square laminates with
hole size d /b=0.1 having SSSS boundary condition and b /h=50

COV of critical buckling load
�%�

Angle
�� Ell Ett �lt �tt Glt Gtt

0 8.388 0.283 0.032 2.482E-06 2.145 0.004
15 8.012 0.596 0.007 3.045E-04 1.786 0.019
30 6.282 0.847 0.009 0.002 4.134 0.050
45 8.197 0.448 0.016 5.643E-04 1.374 0.132
60 7.161 0.930 0.051 0.013 1.584 0.175
75 6.046 1.514 0.037 0.061 2.407 0.071
90 2.446 1.813 0.109 0.035 8.514 0.022
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critical buckling load, it is desirable to see the effect of simulta-
neous variation in all BRVs on the buckling load of plates with
cutouts. The influence of all BRVs changing simultaneously on
the buckling load is depicted in Figs. 7�a�–7�c� for � /− /− /�
square plates with various hole sizes under SSSS, SCSC, and
SFSF boundary conditions, respectively. It is observed that:

1. The COV of buckling load lies between 4% and 7% for
plates with SSSS boundary conditions for all  taken, except
for plates with =90 deg, for which the maximum COV of
buckling load is �14%;

2. The COV of buckling load is less affected by increase in
hole size and remains constant for plates with different ply
orientation except for =90 deg and SSSS boundary condi-
tions. For this plate the COV of buckling load increases with
increase in hole size;

3. The COV of buckling load for plates with SCSC boundary
condition lies between 4% and 6%;

4. For SCSC plates =0 deg, 15 deg, the COV of buckling
load decreases slightly with increase in hole size, whereas
for =45 deg, 60 deg, and 75 deg the COV of buckling load
is almost insensitive to hole size variation and remains con-
stant. For =90 deg the COV first increases and then de-
creases with increase in hole size;

5. The COV of buckling load for plates with SFSF boundary
condition lies between 3% and 7%; and

6. For SFSF plates with =0 deg, 15 deg, 30 deg the COV of
buckling load decreases slightly with increase in hole size,
whereas for =45 deg, 60 deg the COV of bucking load
increases with increase in hole size. Plates with =75 deg,
90 deg the COV of buckling load remains constant.

6 Conclusions

In the present linearized stochastic buckling analysis, an at-
tempt has been made to study the mean and variance of critical
buckling load of laminated composite plates with circular cutout.
The stochastic analysis has been done to account for the effect of
dispersion in the effective material properties, obtained using the
micromechanics based approach, on the critical buckling load.
From the numerical results the following conclusions are drawn:

1. The mean buckling load strongly depends on the ply orien-
tation and boundary constraints.

2. The mean buckling load generally decreases with the in-
crease of cutout size. However, in some cases �due to inter-
play of boundary conditions and ply orientation� the mean
buckling load may increase with increasing hole size.

3. Due to the cutout the internal stress distribution becomes
nonuniform. The non-uniformity is sensitive to the cutout
size and ply orientation. In determining buckling load and
the corresponding mode shape, the role of orthotropy be-
comes more significant.

4. In the case of plates with SFSF boundary conditions, the
buckling loads of solid plates without a cutout are always
higher than those of the plates with holes. The buckling load
decreases monotonically with increase in cutout size.

5. The uniform prebuckled state of stress assumption leads to
prediction of lower mean and SD for the critical buckling
load as compared to that obtained by using the prebuckled
stress.

6. In most cases the COV of buckling load of plates with cut-

Fig. 7 Influence of dispersion in all material properties changing simultaneously on the COV of critical load parameter for
†� /−� /−� /�‡ square laminates with various hole size and different boundary conditions: „a… SSSS; „b… SCSC; and „c… SFSF
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out for the adopted variation in material properties is found
to be �6%.

7. Depending on the ply orientation and applied boundary con-
dition, the variation of the buckling load may be significant
in some cases.

8. Assuming an upper and lower limit in the population as
±3 SD, a COV of 6% would be equivalent to a limiting
upper and lower limit of 18% in the response. In the case of
laminates with =90 deg and SSSS boundary condition this
limit can even go up to 35%.

9. In the design process the effect of dispersion in the material
parameters on the buckling load has to be accounted for.
Due to material dispersion buckling can happen at load lev-
els that are significantly lower than the mean buckling load.
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On the Dynamics of Bodies With
Continual Mass Variation
In this paper the differential equations of the general motion of the rigid body with
continual mass variation are considered. The impact force and the impact torque that
occur due to addition or separation of the body with velocity and angular velocity which
differs from the velocity of mass center and angular velocity of the existing body are
introduced. The theoretical consideration is applied for solving a real technical problem
when the band winds up on the drum. The plane motion of the drum on which the band
winds up is considered. The influence of the velocity of the band on the angular velocity
of the drum and the motion of the drum mass center is obtained.
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1 Introduction

The problem of the motion of the bodies with continual mass
variation has been of interest for many researchers since the 17th
century.

Cayley �1,2� was the first to consider the influence of mass
variation on motion of the body. The class of dynamical problems
he studied were the “continuous impact problems,” i.e., the prob-
lems when the infinitesimal small mass is continuously added to a
system which causes the velocity of the system to be continuously
changed for a definite value. Two examples were considered in
Ref. �3�: one, when the chain is on the table and is dropping
vertically down from the table, and the second, when the chain is
moving straightforward on a horizontal plane without friction un-
der the influence of a mass M which is fixed at the end of a chain
that is rolling around a drum and changing the length during
motion.

In celestial mechanics the problem of continual mass variation
was mentioned for the first time in 1886, and was connected with
the secular acceleration of the Moon. This characteristic of Moon
motion was discovered by Galileo at the end of the 17th century
and theoretically considered by Laplace. Dufour �4� explained that
the mass of the earth varies continuously to the falling shooting
stars and also to combustion or spending in the atmosphere. He
found that the dust of shooting stars, which fell on the surface of
France in 1 year, can cover a volume of 0.1 m3. Oppalzer �5� was
the first to analyze the reason for secular acceleration of the Moon
as a result of the increase of Earth and Moon mass. Namely,
during a 100 years a 2.8 mm dust layer was formed on the Earth.

Gylden �6� extended the previous investigations by analyzing
the relative motion of two variable mass systems under the influ-
ence of Newton force. For planet linear mass increase Gylden
concluded that it will fall on the Sun. Meshchersky �7� assumed
another mass variation for the same problem. He determined that
the body moves along a spiral tending toward zero or increases
the distance.

The first systematic assumption in mechanics of variable mass
was done by Meshchersky �8�. He formed the general differential
equation of motion of a body with variable mass, introducing the
impact force which exists when the relative velocity of separating
or adding body is not zero

Mr̈ = F +
dM

dt
�u − ṙ� �1�

where F is the resultant force acting on the body and �dM /dt��u
− ṙ� the impact force.

The theory was applied for translatory motion of the rigid body
with variable mass. In the equation

Mr̈S = FS +
dM

dt
�u − ṙS� �2�

rS describes the translatory motion of the mass center of the body
and FS is the resultant force acting in the mass center. Using Eq.
�2�, the motion of the mass center of the rotor on which the band
is winding up is obtained �9,10�. Based on the mentioned equation
the motion of various mechanisms with variable mass is consid-
ered �see Refs. �11–13��.

Meshchersky �8� considered the case when the relative velocity
of separating or adding body is zero, i.e., the impact force is zero.
The differential equation for the translatory motion of the rigid
body is

M�t�r̈S = FS �3�

where M�t� is the variable mass of the body, and for rotation
around the fixed axle

J�t��̈ = M �4�

where � is the angle position of the body; J�t� is the variable
moment of inertia of the body; and M is the resultant moment
acting on the body.

Based on the theory of Meshchersky the modern rocket theory
and theory of cosmic flights are developed. For the general motion
of the body with variable mass it is assumed that the absolute
velocity and angular velocity of separating mass are zero �see for
example, Ref. �14��, i.e., the relative velocity and relative angular
velocity of separating mass are the same as the absolute velocity
of the body and the differential equations of motion are

d

dt
�Mv� = Fr,

d

dt
�I�� = MS �5�

where v is the velocity of mass center, � is the angular velocity of
the body, and MS is the resultant moment acting on the body.

Using the principle of solidification Bessonov �15� obtained the
differential equations of general motion of the body. Bessonov
assumed that the relative velocity of adding or separating the body
gives the impact force but the absolute angular velocity of the
added or separated body is zero, i.e., the relative angular velocity

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received February 24, 2006; final manu-
script received September 29, 2006. Review conducted by Igor Mezic.

810 / Vol. 74, JULY 2007 Copyright © 2007 by ASME Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of the added or separated body is equal to the angular velocity of
the remaining body. The differential equations of motion are the
combination of Eqs. �2� and �5�

Mr̈S = FS + �,
d

dt
�I�� = MS + MS

� �6�

where the impact force � is

� =
dM

dt
�u − vS� �7�

and MS
� is the moment of the impact force.

In this paper the theory is expanded to the case when the abso-
lute velocity and the absolute angular velocity of adding or sepa-
rating the body is not zero. Apart from the impact force the impact
torque due to variation of the moment of inertia is also introduced.
The differential equations of general motion of the body where the
impact force and impact torque act are discussed. The obtained
theory is applied for analyzing the plane motion of the rotor on
which the band winds up.

2 Dynamics of Body With Continual Mass Variation
Let us consider the general motion of a body with mass M

whose mass center is S. The motion of the body is defined with
the linear Kb and angular momentum of the body LOb relating to
a fixed point O �Fig. 1�

Kb = MvS, LOb = rS � MvS + LS �8�

and the three kinematic Euler equations. vS is the velocity of mass
center; rS is the position vector of mass center due to the fixed
point O; LS=IS� is the angular momentum of the body relative to
the mass center S; IS is the inertia tensor; and � is the angular
velocity of the body.

A body with elementary mass �M is added with the velocity of
mass center u and angular velocity �2 to the existing body. The
general case of motion of the free rigid body is described by the
following equations

Ka2 = �Mu, LOa2 = rS2a � �Mu + LS2 �9�

where rS2a is the position vector of the added mass due to the
fixed point O; LS2=�IS2�2 is the angular momentum of the
added mass; and �IS2 is the moment of inertia according to the
axes in mass center S2.

The two bodies �existing and added� are regarded as one com-
plex system where impact force between these parts is internal
within the system, i.e., the existing body and the added body form
a unique system �. We assume that the linear momentum before
adding mass is equal to the sum of linear momentums of the
existing and added body, i.e., K1=Kb+Ka2 and the angular mo-

mentum before adding mass is equal to the sum of angular mo-
mentums of the existing and added body, i.e., LO1=LOb+LOa2.

After the adding of body the linear and angular momentum of
the “new” body are obtained and relating to the fixed point O are

K2 = �M + �M�vS1, LO2 = rS1 � �M + �M�vS1 + LS1 �10�

where vS1 is the unknown velocity of mass center S1 of the new
body; LS1=IS1�1 is the angular momentum of the body; and �1
is the unknown angular velocity of the new body.

Using relations �8�–�10� we obtain the linear and angular mo-
mentum differences after and before body addition

K2 − K1 = �K = M�vS1 − vS� + �M�vS1 − u� �11�

LO2 − LO1 = �LO = rS1 � �M + �M�vS1 − rS2a � �Mu − rS

� MvS + �LS1 − LS� − LS2 �12�
As the position vector of gravity center is

rS1 =
M

M + �M
rS +

�M

M + �M
rS2 �13�

and

rS1 = rS + SS1, rS2 = rS + SS2 �14�
we obtain

SS1 =
�M

M + �M
SS2 �15�

Substituting Eqs. �13�–�15� into Eq. �12� and using relation �11�
we have

�LO = rS � �K + SS2 � �M�vS1 − u� + �LS1 − LS� − �IS2�2

�16�

Dividing Eqs. �11� and �16� by the interval of time �t we obtain

�K

�t
= M

�vS1

�t
+

�M

�t
�vS1 − u� �17�

�LO

�t
= rS �

�K

�t
+ SS2 �

�M

�t
�vS1

− u� +
�LS

�t
−

�IS2

�t
�2

�18�
where

�vS1 = vS1 − vS, �LS = LS1 − LS

If the time interval �t is infinitesimal dt, and tends to zero, rela-
tions �17� and �18� transform into

dK

dt
= M

dvS

dt
+

dM

dt
�vS − u� �19�

dLO

dt
= rS �

dK

dt
+ SS2 �

dM

dt
�vS − u� +

dLS

dt
−

dIS

dt
�2 �20�

Relations �19� and �20� represent the time variation of the linear
and angular momentum of the body with continual mass and mo-
ment of inertia variation.

The total moment and angular moment change of the variable
mass system on receiving the body with mass �M and moment of
inertia �IS2, can be associated with an impulse Fr�t and corre-
sponding value MO�t due to the action of an external resultant
force Fr, which is the sum of the external forces acting on the
system of bodies, and a resultant moment of the external forces
MO about the fixed point O. In the limit �t→0

dK

dt
= Fr,

dLO

dt
= MO �21�

By introducing the moment of external forces MS for the mass
center of the body S the connection between the two resultant

Fig. 1 Model of the mass addition system with position vec-
tors of mass centers rS and rS2, velocities of mass centers vS,
and u and angular velocities � and �2 of the bodies � and �
before and rS1, vS1, and �1 of the system � after mass variation
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moments MO and MS for the two points O and S is

MO = MS + rS � Fr �22�
Introducing Eqs. �21� with Eq. �22� into Eqs. �19� and �20� the

differential equations of motion of the body with continual added
mass are obtained

dK

dt
�

d

dt
�MvS� = Fr +

dM

dt
u �23�

dLS

dt
�

d

dt
�IS�� = MS + MS

� +
dIS

dt
�2 �24�

where IS� is a vector which is the dot product of the tensor IS
with the vector �, the impact force is

� =
dM

dt
�u − vS� �25�

and the moment of the impact force due to point S is

MS
� = SS2 � � �26�

For �see Ref. �16��

d

dt
�IS�� = �

dIS

dt
+ IS

d�

dt
+ � � IS� �27�

the differential equations of motion transform to

M
dvS

dt
= Fr +

dM

dt
�u − vS� �28�

IS
d�

dt
= MS + MS

� +
dI

dt
��2 − �� − � � IS� �29�

i.e.,

M
dvS

dt
= Fr + � �30�

IS
d�

dt
= MS + MS

� − � � IS� + R �31�

where the impact torque is

R =
dIS

dt
��2 − �� �32�

The first equation defines the translational motion and the second
the rotation around the mass center S.

Introducing the fixed coordinate system Oxyz, the components
u, v, w of the velocity v, the components u2, v2, w2 of the velocity
u, and Fx, Fy, Fz the components of the resultant Fr, the vector
differential equation of translational motion is given with three
scalar equations

M
du

dt
= Fx +

dM

dt
�u2 − u�

M
dv
dt

= Fy +
dM

dt
�v2 − v�

M
dw

dt
= Fz +

dM

dt
�w2 − w� �33�

The terms on the right side of Eq. �33�

�x =
dM

dt
�u2 − u�, �y =

dM

dt
�v2 − v�, �z =

dM

dt
�w2 − w�

�34�

are called the projections of the impact force. The impact force is
the consequence of mass variation.

For the reference system S��� fixed to the body with the origin
in the center of mass of the body the inertial tensor I has nine
components: I�� , I�� , I		 are the moments of inertia and I�� , I�	 , I�	

and also I�� , I	� , I	� are the products of inertia. If the axes are
principal and products of inertia are zero simultaneously the iner-
tial tensor I has only three principal moments of inertia
I�� , I�� , I		. The angular velocity � has three components p, q, r
in this frame. If p2, q2, r2 are the components of the angular
velocity �2, M�, M�, and M� are the body-axis components of MS

and M�
�, M�

�, and M	
� are the body-axis components of MS

�, the
vector equation for rotational motion Eq. �29� in the form of three
scalar equations is

I��

dp

dt
+ �I		 − I���qr = M� + M�

� +
dI��

dt
�p − p2�

I��

dq

dt
+ �I�� − I		�pr = M� + M�

� +
dI��

dt
�q − q2�

I		

dr

dt
+ �I�� − I���pq = M	 + M	

� +
dI		

dt
�r − r2� �35�

The terms on the right side of Eq. �35�

R� =
dI��

dt
�p2 − p�, R� =

dI��

dt
�q2 − q�, R� =

dI		

dt
�r2 − r�

�36�
are called the projections of the impact torque. The impact torque
is the consequence of variation of moment of inertia of the body.

The system of differential Eqs. �33� and �35� describe the gen-
eral motion of the body with added mass.

For the case when mass separates the differential equations of
motion have the same form as Eqs. �33� and �35� but the signs of
separating mass dM /dt and separating moment of inertia dI /dt
are negative.

3 Discussion of the Differential Equations of Motion
Comparing the differential equations of general motion of the

rigid body with continual body variation Eqs. �33� and �35� with
Eq. �6� it can be concluded that in the previous consideration the
impact torque is more general. Namely, the impact torque

R = −
dI

dt
� �37�

represents only a special case of the impact torque Eq. �32�

R =
dI

dt
��2 − �� �38�

where �2=0. For the case when the absolute angular velocity of
the added or separated body differs from the angular velocity of
the existing body the impact torque is defined by Eq. �38� and if
the absolute angular velocity is zero the impact torque is defined
by Eq. �37�.

For the special case when the absolute velocity of the added or
separated body is equal to the angular velocity of the existing
body �2=� the reactive torque Eq. �38� is obtained to be zero

R = 0 �39�

In the paper of Meshchersky �8� this special case is considered for
the rotating body.

The equations of rigid body motion represent the special case of
those of the systems which mass and moment of inertia vary due
to add or separating the mass. Namely, for constant mass and
moment of inertia the impact force � and the impact torque R are
equal to zero and the equations of motion Eqs. �30� and �31�
become
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M
dvS

dt
= Fr, IS

d�

dt
+ � � IS� = MS �40�

4 Band is Winding Up on a Drum
Let us analyze the winding up of the band on a drum. The

elastic properties of the band at the moment of adding to drum are
omitted and are assumed to be inextensible. In general the drum
on which the band winds up has plane motion. In the fixed inertial
system plotted in Fig. 2 the differential equations of the plane
motion of the drum on which the band winding up, according to
Eqs. �33� and �35�, are

d

dt
�MẋS1� = Fx +

dM

dt
vxb

d

dt
�MẏS1� = Fy +

dM

dt
vyb

d

dt
�IS1�̇� = MS1 + MS1

� +
dIS1

dt

b �41�

where

MS1
� =

dM

dt
��S1S2�x�vyb − ẏS1� − �S1S2�y�vxb − ẋS1�� �42�

�S1S2�x and �S1S2�y are projections of the position vector of the
point of mass addition due to the mass center S1; 
b is the angular
velocity of the winding band; vxb and vyb are the projections of the
linear velocity of the winding band; M is the mass of the drum
with the band; IS1 is moment of inertia of the drum with band; ẋS1
and ẏS1 are the projections of the velocity of the mass center of the
drum with band; and �̇ is the angular velocity of the drum with
band.

The technical requirement for winding up the band is for the
absolute velocity of the band vb to be constant. Only for that
condition is rolling up the band on the drum accurate without
crumpling the band or its plucking. The band is moving transla-
tory with velocity v horizontally, parallel to the y axle in Fig. 2.
The projections of the band velocity are

vxb = 0, vyb = v �43�
Rolling up of one band layer is discussed. The angle of rolling up
of the band is in the interval from �=0 to �=2�.

4.1 The Geometric and Physical Properties of the Drum
With Band. If the mass of the drum with unrolled band is M0 and
the rolling mass is Mr

Mr = �� �44�
where

� = Rhb� �45�

h is the thickness; b is the width; and � is the density of band; the
mass M variation is a linear function of the angle �

M = M0 + Mr = M0 + �� �46�
The position of mass center of the drum with unrolled mass is

SS1 =
Mr

M
�SS�� �47�

where SS� is the distance of the mass center of the unrolled mass
on the drum

SS� = R
sin��/2�

�/2
�48�

According to relations �46�–�48� the distance between the mass
center of the whole system and the rotation center is obtained

SS1 =
2�

M0 + ��
sin��

2
� �49�

The moment of inertia of the drum with the unrolled mass is J0
and the moment of inertia of the band which is rolling up is

Jr =�
0

�

R2 dMr =�
0

�

R3hb� d� = j� �50�

where j=R3hb�=�R2 is the unit moment of inertia. The total
moment of inertia is obtained by superposition of both moments
of inertia

JS = J0 + j� �51�
Applying the Steiner theorem the moment of inertia for the par-
allel axis settled in the mass center is obtained

JS1 = JS − M�SS1�2 �52�

4.2 Forces Acting on the System. During winding up of the
band the following forces act: the elastic force of the shaft, the
damping torque, the impact force, and the impact torque.

The elastic force of the shaft is projected in the fixed coordinate
system

Fx = − cxS = − c�xS1 − SS1 cos
�

2
� ,

Fy = − cyS = − c�yS1 − SS1 sin
�

2
� �53�

where c is the rigidity of the shaft.
According to Eqs. �41� and �43� the projections of the impact

force � and the impact torque I are obtained

�x =
dM

dt
�− ẋS1�, �y =

dM

dt
�v − ẏS1�, R =

dIS1

dt
�− �̇�

If the rotational damping torque acts

MD = − D�̇ �54�

where D is the damping coefficient, and the moment of the impact
force according to S1 is considered, the differential equations of
the plane motion is obtained

MẍS1 + cxS1 = c�SS1�cos
�

2
+

dM

dt
�− ẋS1�

MÿS1 + cyS1 = c�SS1�sin
�

2
+

dM

dt
�v − ẏS1�

JS1�̈ + D�̇ =
dJS1

dt
�− �̇� + xS1c�SS1�sin

�

2
− yS1c�SS1�cos

�

2

+
dM

dt
�v − ẏS1��S1S2�x −

dM

dt
�− ẋS1��S1S2�y �55�

Analyzing relation �49� it can be concluded that SS1�1 and in
the first approximation the terms with SS1 in Eq. �55� can be
omitted as the small values. Using relations �46�, �51�, and �52�
the differential Eq. �55� simplifies to

Fig. 2 Model of the drum with winding band
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MẍS + cxS = − ��̇ẋS, MÿS + cyS = ��̇�v − ẏS� �56�

JS�̈ + D�̇ = − j�̇2 + ��̇�v − ẏS��SS2�x + ��̇ẋS�SS2�y �57�

The system of differential Eqs. �56� and �57� is nonlinear.

4.3 The Shaft is Rigid. If the shaft of the drum with the
winding up band is rigid the motion of the system transforms to a
rotation around the rigid axle �xS=yS=0�

�J0 + j���̈ + D�̇ = − j�̇2 + ��̇vR �58�

Introducing the new variable u���= �̇ the differential Eq. �58� is
transformed to the Bernoulli equation

�J0 + j��
du

d�
+ ju = ��vR − D� �59�

whose solution for the initial condition �̇�0�=
b has the form

�̇ =
J0
b + ��vR − D��

J0 + j�
�60�

Relation �60� describes the variation of the angular velocity of the
drum when the absolute velocity v of the winding band is con-
stant. The angular velocity of the drum decreases during winding
up of a layer.

Integrating the differential Eq. �60� for the initial angle ��0�
=0 the time history of angle variation is obtained

� + � J0

j
−

J0
b

�vR − D
�ln	1 + �

�vR − D

J0
b
	 =

�vR − D

j
t �61�

This form of solution is not convenient for discussion. Introducing
the new variable

r = 1 +
�vR − D

J0
b
� �62�

Eq. �61� is

r +
D

j
b
ln r = 1 +

��vR − D�2

J0j
b
t �63�

Let us introduce the new function

w = − ln r −
f1

k1
�64�

where

f1 = 1 +
��vR − D�2

J0j
b
t, k1 = −

�vR − D − j
b

j
b
�65�

After substituting Eq. �64� into Eq. �61� and some transformation
the obtained result is

w exp�w� = x �66�

where

x =
1

k1
exp�−

f1

k1
� �67�

The solution w�x� of Eq. �66� is the Lambert’s w function �17�

w�x� � lambert w
 1

k1
exp�−

f1

k1
�� �68�

Substituting into Eq. �64� the solution for r is obtained

r = − k1�lambert w
−
1

k1
exp�−

f1

k1
�� � − k1w�x� �69�

which gives the implicit solution for Eq. �61�

� = J0�1

j
−


b

�vR − D
�w −

J0
b

�vR − D
�70�

For the case when damping is neglected and assuming that v
=
bR relation �61� is simplified and the angle time function is
linear

� = 
bt �71�

4.4 The Shaft is Elastic. Let us transform the differential
Eqs. �56� introducing the variables

xS = x���, ẋS =
dx

d�
�̇, ẍS =

d2x

d�2 �̇2 +
dx

d�
�̈ �72�

yS = y���, ẏS =
dy

d�
�̇, ÿS =

d2y

d�2 �̇2 +
dy

d�
�̈ �73�

The obtained system of differential equations of plane motion is

�M0 + ����̇2 d2x

d�2 +
dx

d�
���̇2 + �M0 + ����̈� + cx = 0 �74�

�M0 + ����̇2 d2y

d�2 +
dy

d�
���̇2 + �M0 + ����̈� + cy = ��̇v

�75�

JS�̈ + �D − �vR��̇ + j�̇2 = − ��̇2R
dy

d�
�76�

Substituting Eq. �60� into Eqs. �74� and �75�, assuming that � /M0,
j /J0, � /J0, and D /J0
b are small parameters, the simplified dif-
ferential equations are formed

d2x

d�2 + 2
dx

d�
+ �2���x = 0 �77�

d2y

d�2 + 2
dy

d�
+ �2���y =

�

M0
R �78�

�̈ +
D − �Rv

JS
�̇ +

j

JS
�̇2 = −

�

J0
R�̇2 dy

d�
�79�

where

2 = 2
�

M0
−

j

J0
−

D

J0
b
, �2��� � �2 = k2�1 − A�� ,

k2 =
�1

2


b
2 , �1

2 =
c

M0
, A = 3

�

M0
− 2

j

J0
−

D

J0
b

To obtain the approximate analytic solutions of Eqs. �77�–�79�
the Bogolubov–Mitropolski method is modified for the nonho-
mogenous rheo-linear differential equations.

Omitting the terms on the right side of Eq. �79� as small values
the approximate solution of Eq. �79� corresponds to the case of
rigid shaft Eq. �60�. Substituting Eq. �60� into Eq. �78� the solu-
tion of the differential Eq. �78� is assumed as

y = a���exp�− ��cos ���� +
1

�2���
�

M0
R � a exp�− ��cos �

+
1

�2���
�

M0
R �80�

where

���� =� ����d� + ���� �81�

and the first derivative of the function y
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dy

d�
= �− a cos � − a����sin ��exp�− �� − � �

M0
�2 R

k2�1 − A��2

�82�
with

da

d�
cos � − a

d�

d�
sin � = 0 �83�

Eliminating the second-order small term in Eq. �82� the relation
transforms to

dy

d�
� �− a cos � − a����sin ��exp�− �� �84�

Using relations �80�–�84� the differential Eq. �78� is trans-
formed into a system of two first-order differential equations

da

d�
= −

a

�

d�

d�
sin2 �,

d�

d�
=

1

2�

d�

d�
sin 2� �85�

It is at this point where the averaging procedure 1/2��0
2��•�d� is

introduced and relations �85� are simplified into

da

d�
= −

a

2�

d�

d�
,

d�

d�
= 0 �86�

For the initial conditions

� = 0, a = a0, � = �0 �87�
the solution of Eq. �78� in the first approximation is

yS = y��� =
a0

�4 1 − A�
exp�− ��cos�k��1 − A�� + �0� +

R

k2

�

M0

�88�
According to the suggested procedure the solution of Eq. �77� is

xS = x��� =
b0

�4 1 − A�
exp�− ��cos�k��1 − A�� + �0� �89�

where b0 and �0 are initial amplitude and phase. The parameter
values have to satisfy the relation

3
�

M0
− 2

j

J0
−

D

J0
b
�

1

2�
�90�

The motion of the rotor center depends on the ratio between the
small parameters � /M0, j /J0, and D /J0
b. For small value of
the rotational damping and higher velocity of the rolling band the
vibrations decrease.

Using the obtained solution Eq. �88� the correction for the angle
velocity Eq. �60� can be denoted. Due to the fact that ẏS tends to
zero for technical reasons relation �60� is assumed to be accurate
enough.

5 Conclusion
During the process of continual mass variation, the mass and

moment of inertia of the rigid body vary due to adding or sepa-
rating of mass in the short infinitesimal time interval: mass but
also the form and the volume of the body are continually varying
in time. This causes the body mass center position variation and
also the change of the moment of inertia and the products of
moment of inertia. Due to mass and moment of inertia variation
the impact force and impact torque act. Namely, the absolute ve-

locity and angular velocity of addition or separation differs in
general from the velocity of mass center and angular velocity of
the existing body and it causes the impact to occur. As the mass
variation is continual the impact is substituted with an “impact
force” and “impact torque” which continually act on the body. The
force and torque depend on the absolute velocity of mass center
and angular velocity of the separated or added body.

For rolling up the band on the drum mass and moment of inertia
of the drum with band varies. Mass and moment of inertia depend
on the angle position of the wound band. Due to geometry varia-
tion of the drum with band the mass center position inside the
system also varies. This variation seems to be small and is ne-
glected in our consideration. During winding up of the band on
the drum the impact occurs due to the difference in velocity and
angular velocity of the band and drum. It causes the vibrations of
the mass center of the drum. The vibrations of drum mass center
depend on the amount of the band winding up on the drum: the
higher the amount of band on the drum the smaller the vibrations.
The damping property of the drum also has an influence on the
vibrations: the higher the damping the smaller the vibrations.

The band is wound up with constant velocity. This requires the
angle velocity of the drum to vary. The angle velocity variation is
the function of the moment of inertia of the band, which winds up
and also of the damping properties of the system: for higher
damping the angle velocity decreases faster than for smaller
damping; the larger the moment of inertia of the wound up band
the slower the decrease of the angular velocity. This result is of
technical importance for regulating the rotation of the drum.
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The paper presents an investigation into producing the self-
levitation effect using piezo-electric actuators (PZTs). Self-
levitation has been demonstrated and results are presented and
discussed. A relationship between the levitation distance and
weight of the levitating sample has been found. In addition, the
orientation and position of the PZTs has been found to affect the
levitation distance. Modal shapes of the vibration plates used
have been produced through modeling and found to accurately
correlate with the experimental results found. Additional evidence
suggests that the type of vibration plate material affects the sepa-
ration distance, possibly due to the material’s properties of acous-
tic reflection. �DOI: 10.1115/1.2424472�

1 Introduction
Increasingly in modern technology the demand for engineering

components is to become smaller and smaller. This opens up a
completely new area of microtechnology and precision engineer-
ing in the nanometer scale. One of the main problems with manu-
facturing components at such a small scale with equipment such
as laser cutters, optical scanners, and silicon chip production tools
is the accuracy of any movement at this scale. Static friction has a
major effect on controlled precise movements at the nanometer
scale. Near frictionless operation of machinery for nanometre ac-
curacy is a definite prerequisite.

Producing frictionless movement can be achieved in a number
of ways. However, all currently used techniques are not without
certain disadvantages of a practical nature. Near-field acoustic
levitation �NFAL� �1–3� is an interesting alternative for near fric-
tionless operation of high precision machinery. NFAL is produced
when rapid vibrations between two surfaces close together in a
compressible fluid medium such as air create a load carrying gas

film. This gas film has a pressure greater than the ambient pres-
sure and so can support a load. The production of rapid vibrations
can be achieved by some form of piezo-electric actuator �PZT� as
the frequency required is particularly high. The separation be-
tween the two surfaces can be very small indeed, in some cases
down to a distance of just 10 �m.

Acoustic levitation of solids has been suggested for use in non-
contact transportation of glass substrate of liquid crystal display
�LCD� in its manufacture �1�. Since the acoustic levitation effect
can be used to move objects as well as cause them to levitate,
many other applications would be applicable to acoustic levitation
where relatively light objects need transporting accurately.

This paper reports on a sliding contact operating on NFAL prin-
ciple. The ultrasonic frequency range used is inaudible so opera-
tion of any NFAL contact should be kept within this region if
NFAL is to be recognized as a plausible method for use in indus-
try. The main objective of the study presented was to find proof of
evidence demonstrating that the NFAL contact is practically fea-
sible and operates due to the emission of an ultrasonic acoustic
wave from a parallel surface. Once the acoustic levitation concept
was confirmed it was then possible to investigate relationships
between the levitation effect and various parameters affecting it
�4�.

2 Experimental Setup
In order to investigate the possibility of self-lifting generation

due to NFAL a plain rectangular piece of material was rigidly
clamped at each end as shown in Fig. 1 �5�. The initial dimensions
of the rectangular plate were 200�100�5 mm and it was made
from aluminum. The plate had two foil-type piezoelectric actua-
tors on the underside of it, which produce Poisson’s ratio contrac-
tion effect when operated. In addition, these two PZTs generate an
ultrasonic acoustic wave from the surface of the plate to allow
small mass objects to levitate utilizing the NFAL effect.

The test rig main structure is made of mild steel and holds the
vibrating plate clamped in the horizontal plane. The vibrating
plate is clamped at both ends to the steel supporting structure. The
three feet to the base are adjustable so that the testing rig can be
balanced with the use of a spirit level when set up on a bench.

Vibrating plates used in experiments were: the 1 mm aluminum
plate, 1.9 mm aluminum plate, 1.55 mm titanium plate, and the
1.1 mm steel plate. The 1.9 mm aluminum plate was tested first
and good results were obtained. The 1 mm aluminum plate was
then tested, as thinner plates should lead to higher amplitude of
vibrations due to the lower mass of the plate being accelerated and
the increase in deformation. The high carbon steel plate was cho-
sen to obtain ground steel gauge plate, as it was thought that the
smooth ground finish would increase the NFAL performance. The
titanium plate was tested because titanium has certain elastic
properties that were thought to be favorable to the NFAL effect.

The floating samples used for the experimental testing had to
have five very important features.

1. The sample needed to be as flat and smooth as possible on
the side facing the vibrating plate.
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2. The samples needed to be relatively light. The amount of
weight per unit area that can be supported by the NFAL
effect may be very small with the small size of the PZTs
driving the plate.

3. The floating samples needed to be rigid. If the samples were
not rigid then the acoustic waves emitted from the vibrating
plate would be partially absorbed by the sample. The levi-
tating sample is a reflector of ultrasonic acoustic waves pro-
duced by the vibrating plate. This is a fundamental part of
the NFAL principle, having a rigid sample will greatly im-
prove the performance of the NFAL effect observed.

4. The sample had to be at least 1.5 wavelengths of the flexural
wavelength of the vibrating plate to levitate stably. Through
modeling, it was discovered that the floating sample would
need to be at least 30 mm in most modes of vibration for all
of the plates.

5. The top surface of the sample had to be metallic. The prox-
imity probe, used to measure separation, can sense only con-
ductive surfaces.

The most readily available samples that were found to cover all
of these criteria were glass discs of 49.5 mm diameter and 3 mm
thickness and acrylic discs of 49.5 mm diameter and 6 mm thick-
ness. Both of these samples agree with all of the above conditions,
although neither of the samples were metallic.

To use the glass and acrylic samples with the proximity probe
the upper surface of the sample needed to be metallic. This was
overcome by having both of the samples gold plated. The gold
plating technique produces a very thin layer of less than 0.1 �m.

However, the layer is sufficient to be detected by the capaci-
tance proximity sensor and thin enough not to affect the sample’s
smooth surface.

Foil type PZTs were used and they are known to change length
when a voltage is put across them in order to vibrate the plate on
the rig. These PZTs are capable of operating at ultrasonic frequen-
cies and were suitable for this application. The PZTs were bonded
to the plates with epoxy resin in the manner shown in Fig, 2.
Initially, two PZTs were used. Their positions were decided as the
best position over the plate with regard to the most flexural part of

the plate: one element in the center of each half of the plate less
the clamped ends of the plate. Also the orientation of the PZTs
was chosen to be lengthways as in this direction the plate has
more material and so is more flexural.

3 Experimental Apparatus and Procedures
The apparatus, as used during experimental investigations, is

shown in Fig. 3. The input equipment consists of a 110 V trans-
former and a sine wave signal generator. The 110 V transformer
has to be used to drive the ultrasonic PZT amplifier and the PZT
monitor. The sine wave signal generator is needed to create the
sinusoidal frequency required to drive the PZTs attached to the
plate. This sine wave generator is operated between the frequency
range of 10 and 60 KHz and it goes well into the ultrasonic re-
gion. Two experiments of fundamental importance for the concept
of NAFL were carried out, namely; �1� voltage amplitude versus
levitation distance and �2� supported load per unit area �surface
density� versus levitation distance.

4 Results and Discussion
The testing began with a 1.9-mm-thick aluminum plate and the

lengthways orientation of the PZTs. A preliminary experiment was
carried out according to the experimental procedure described ear-
lier. A gold plated glass disc was used as the levitation sample and
the plate was operated at a resonant frequency of 25.6 kHz, which
was found to be the most powerful ultrasonic resonant frequency.

4.1 Effect of PZT Orientation. The experimental findings
showed that the levitation distance of the floating sample was less
than 5 �m at full peak to peak voltage. In order to increase the
levitation distance of the floating sample two additional PZTs
were added to the vibration plate laterally across the centre of the
plate now giving the plate four PZTs. The levitation distances
obtained with the additional elements were much higher. The re-
sults of the different orientations of the PZTs are shown in Fig. 4.
It is clearly shown that the levitation distance is almost entirely
dependent upon the laterally aligned PZTs and the longitudinally
aligned elements do not contribute much to the NFAL effect. As
the graph shows, the levitation distance versus input voltage am-
plitude relationship seems to be a reasonably linear for the later-
ally applied PZTs when just the values above the 5 �m separation
distance are considered. This can also be said for the PZTs orien-
tated longitudinally for voltage amplitudes greater then 120 V
peak to peak. However, the separation distances achieved with
this orientation of the PZTs is far less than the laterally orientated
ones. In fact, the levitation distances attained do not even go
above the critical separation distance of 5 �m and so these results
could be disregarded altogether as true levitation of the sample

Fig. 1 Piezoelectric driven plate and levitating sample

Fig. 2 Vibration plate with four PZTs bonded to the underside
of the plate

Fig. 3 Apparatus setup
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may not be fully achieved here and there may still be contact with
the vibration plate below. The reason for the orientation of the
PZTs affecting the performance of the NFAL so dramatically is
thought to be that the lateral PZTs excite the plate in this mode of
vibration much more. This can be clarified by looking at the
modal shape of the plate at the frequency of 25.6 kHz, shown in
Fig. 5. This figure demonstrates the modal shape of the plate when
at its resonant frequency of 25.6 kHz. To achieve a pattern depict-
ing the modal shape of the vibrating plate, caster sugar was simply
poured onto the plate and the sugar particles gathered around
nodes—the points between the oscillating crests and troughs of a
standing wave of the flexural wave of the plate. The sugar par-
ticles gathered here because the nodes are stationary positions of
the plate and so permit the sugar particles to reside. This mode
appeared to displace the most perpendicular to the surface of the
plate in comparison with other resonant frequencies found be-
tween the frequencies of 20 and 50 kHz. This was found both
with the maximum levitation distance achieved at this frequency
and the sugar particles being most vigorous at this frequency, as
they are forced off the oscillatory parts of the plate. The experi-
mental modal shape at this frequency agrees well with the modal
shape found within finite element analysis �FEA� modeling at a
frequency of 25.955 kHz �see Fig. 6�. This is the only modal
shape found that has eight longitudinal nodes of flexural vibration
and the frequency is very close �within 1.4%� to the frequency
found during testing.

The deformed shape of the model �see Fig. 7� shows, in an

exaggerated scale, the modal shape of the plate when vibrating at
the frequency of the 25.96 kHz model. It can be seen from Fig. 7
that the reason that the PZTs excited the plate in this mode much
better when mounted laterally, is because the force of the elements
was applied across the peak of a flexural wave. Unlike in the
longitudinal direction, this orientation of the PZTs resulted in
plate deformation similar to the plate’s modal shape at this fre-
quency. This explains why the lateral PZTs produced a levitation
distance that is over six times higher than that obtained with the
longitudinal PZTs. The best position for the elements to be in
would be centered on a crest of one of the peaks/troughs as the
shape oscillates between the two. In this position the maximum
displacement of the PZT can be utilized as this position of the
flexural wave is where the maximum lateral displacement occurs
�see Fig. 8�. The crests of the flexural wave of the plate are shown
to be the most laterally displaced positions locally over the length
of a PZT �10 mm� in Fig. 8.

Positioning the lateral PZTs centrally over the crest of the plate
flexural waves could increase the levitation distance of the NFAL
effect even further, as the current position of the elements is not
centrally over the crest of the waves. If the NFAL effect were to
be increased even further, then several PZTs of the same dimen-

Fig. 4 Graph of separation distance versus voltage across
PZTs, for three orientations of the PZTs, at 25.6 kHz

Fig. 5 The pattern of sugar upon the plate when resonating at
25.6 kHz

Fig. 6 Modal shape of the plate at 25.955 kHz

Fig. 7 Exaggerated model of the modal shape of the plate
when excited to resonant frequency of 25.955 kHz
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sions used in this experiment could be positioned on the underside
of the plate placing each PZT over the crest of one of the flexural
waves of the plate.

4.2 Load Carrying Capacity. Aluminum plate with 1.9 mm
thickness was used and operated at the frequency of 25.6 kHz.
The levitating specimen was the gold plated glass disc. The results
obtained from the testing are shown in Fig. 9. This figure shows
the combined mass of the levitating sample versus the separation
distance achieved for the fixed voltage input amplitude. It appears
that the levitation distance is inversely proportional to the square
root of the weight per unit area of the floating specimen in all
flexural modes, that is

L = k
1

�m
�1�

where L is the separation distance; m is the mass of floating speci-
men; and k is a constant. In order to prove the correlation with the
above equation the results shown in Fig. 9 were replotted but this
time in a graph of levitation distance versus the inverse of the root
of the total mass on the levitating object. It is seen from Fig. 10

that a linear relationship was obtained.
The levitation distance was found to be proportional to the in-

verse root of the total mass of floating object with the proportion-
ality constant k equal to 1*10−4.

4.3 Effect of Vibrating Plate Material. In order to ascertain
the effect of plate material on levitation two additional plates,
1.6-mm-thick titanium and 1.1-mm-thick steel were made and
tested. In Fig. 11, the results obtained are compared with the set of
results found for the aluminum plate of 1.9 mm thickness.

As the results show, the 1.9 mm aluminum plate produces the
largest separation distances. The 1.1 mm steel plate produces the
next highest separation distances and then the 1.6 mm titanium
plate produces separation distances that have been recorded but
are all below the 5 �m level.

In an attempt to understand the differences between the NFAL
effect when using these materials, the mass of each plate must be
taken into consideration. The masses involved were: 172.9 g,
144.8 g, and 103.5 g for steel, titanium, and aluminum plates,
respectively. Lighter plates should give better NFAL effects as
they can be accelerated greater with the same force and so the
flexural wave should have higher amplitudes of displacement.
This appears to be true at first as the aluminum plate did produce
the greatest vibrations; however the steel plate, which is the heavi-
est plate of the three, is not the worst plate with regard to levita-
tion distance. The distances produced with the steel plate were
higher than the ones produced with the titanium plate.

The reason for this noncorrelation of mass of plate versus levi-
tation distance may be because the modal shape for each plate is
dependent on the dimensions of the plate and the material prop-
erties, namely the Young’s modulus, Poisson’s ratio, and the den-
sity of the material. In order for any material to produce a large
NFAL effect the plate must have a modal shape at an achievable
frequency with a given equipment, and the PZTs must by posi-
tioned and orientated in an optimal way so that maximum dis-
placement of the plate is possible perpendicular to the surface of
the plate. The 1.9 mm aluminum plate achieved these goals better
than the other plates and so outperformed them by producing a
larger separation distance.

5 Conclusions
Based on obtained results the following conclusions can be

drawn.

Fig. 8 Contour plot of lateral displacement when in modal
shape at frequency of 25.955 kHz

Fig. 9 Separation distance versus total mass of levitating sample
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1. Existence of NFLA effect has been experimentally con-
firmed.

2. For the 1.9 mm aluminum plate, a reasonably linear relation-
ship was found to exist between the PZT input voltage and
the levitation distance at the frequency of 25.6 kHz. This
can also be said for the titanium, and steel plates at their
respective frequencies.

3. A relationship between surface density and separation dis-
tance for the 1.9 mm aluminum plate at a frequency of
25.6 kHz was found to exist, as given by Eq. �1�.

4. The orientation and position of the PZTs was found to be
one of the most important factors controlling the effective-
ness of the NFAL phenomenon. It has been found that at-
taching the elements in a suitable position on the plate is
dependent upon the modal shape produced at the operating
frequency of the vibrating plate and the dimensions of the
PZTs.

5. Computer modeling results of modal shape agree well with
experimental findings. Both the modal shape and the fre-
quency at which it is produced show excellent correlation.

6. Vibration plate material greatly affects the separation dis-
tance created with the NFAL effect. This is because the
modal shape and resonant frequencies, closely governing the
NFAL effect, were also altered by the material.
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By taking into account the effect of surface elasticity, the problem
of a half plane under concentrated normal or shear loads is first
considered. The solutions for the displacements or alternatively
named surface Green’s functions can be obtained by using the
Fourier integral transform technique. Based on such solutions,
the elastic interaction between two surface steps that are modeled
as force dipoles is further investigated. The results show that the
effect of surface elasticity on the interaction energy is significant
when the distance between the two steps is in the range of several
times the intrinsic length scale of the system. Further, surface
elasticity seems to influence the interaction between steps with
force components parallel to the surface more strongly than that
when the steps exhibit force components only normal to the
surface. �DOI: 10.1115/1.2424473�

1 Introduction
Step-step interaction plays an important role in many different

areas such as epitaxial growth and surface chemistry and therefore
has been the subject of numerous fundamental studies. From the
perspective of continuum analysis, Marchenko and Parshin �MP�
�1� supposed that steps could be modeled as force dipole lines on
flat surfaces �generally referred to as the MP model� and thus
obtained that the interaction energy between two steps is in the
form of d−2 with d being the distance between the two steps.
Some experiments also verified the results �2�. However, there are
also results in contradiction with the MP model. For example,
Kouris et al. �3� found that the interaction energy between two
steps sometimes does not follow the form of d−2; Prevot et al.’s
�4� and Silkrot and Srolovitz’s �5� molecular dynamic simulations
show the dipole strength is inconsistent with that in the MP
model. To explain those results, Kukta et al. �6� have proposed a
model by taking into account the geometry of the steps while
Prevot and Croset �7� have employed embedded dipoles to model
steps. Though much improvement has been achieved in certain
circumstances, those models unanimously neglect the effect of
surface elasticity, i.e., the elastic property of flat surfaces that has
been recognized fairly long ago by many authors. See, for ex-
ample, Shuttleworth’s work �8�. It is worth mentioning that based
on that work, Gurtin and Murdoch �9� have developed a generic
constitutive relation for the surfaces from the perspective of con-
tinuum mechanics. Their work recently has gained some attraction
in studying the mechanical behavior of nanosystems that yielded
results in good agreement with those by molecular simulations
�10,11�.

With those in mind, in the present work we attempt to consider

the effect of surface elasticity on the interaction energy between
surface steps by using Gurtin and Murdoch’s theory �9� and the
MP model �1�. To this end, the surface Green’s functions or the
problem of a half plane under concentrated normal or shear loads
with the effect of surface elasticity will be solved first.

2 Surface Green’s Functions for Surface Elasticity
As will be shown in the next section, it is important to obtain

the surface Green’s functions for one to study the interaction be-
tween two surface steps. To this end, let us consider a semi-
infinite system loaded by tractions F���=1,2� under plane strain
deformation.. According to Gurtin and Murdoch �9�, the basic
equations with the effect of surface elasticity can be written

���,� = 0, �,� = 1,2 �1�

in the bulk and

�11,1 + F1 = �12, �22 = F2 �2�

on the surface. ��� and �11 are, respectively, the conventional
Cauchy stresses and surface stress. It is worth pointing out that
�11 is the only nontrivial component of surface stresses in the
present situation. Equation �2� in essence is the equilibrium be-
tween surface stress and bulk stress. The stresses and surface
stress can be related to strain as follows

��� = ������� + 2	���; �11 = 
0 + ��s + 2	s − 
0��11�x1,0�
�3�

in which � and 	 are Lame constants for the bulk, �s and 	s Lame
constants for the surface that can be obtained from atomic calcu-
lation, and 
0 the residual surface stress that will be assumed to be
zero for convenience. The strain can be expressed in terms of
displacement components uk

��� = 1
2 �u�,� + u�,�� �4�

The displacements induced by F1=��x1� ,F2=0 �i.e., a concen-
trated shear force� or F1=0,F2=��x1� �i.e., a concentrated normal
force� and satisfying Eqs. �1� and �2� are defined as surface
Green’s functions for the present problem and can be obtained by
the Fourier integral transform technique. For this purpose, substi-
tute Eq. �4� into Eq. �3� and then into Eq. �1�, and we obtain

�� + 2	�u1,11 + 	u1,22 + �� + 	�u2,12 = 0 �5a�

�� + 	�u1,12 + 	u2,11 + �� + 2	�u2,22 = 0 �5b�

Applying Fourier integral transform to the above equations with
respect to x1, one obtains the general solutions of displacements in
the transformed domain

ũ1 =
1

2	is
�s2A1 + �s2x2 + 2�1 − ���s�x2�A2�exp��s�x2� �6�

ũ2 =
1

2	
�− �s�A1 + �1 − 2� − �s�x2�A2�exp��s�x2� �7�

where “�” stands for Fourier integral transform, s for the trans-
formed variable, and i=�−1, A1, and A2 are constants to be deter-
mined, and �=� /2��+	� the Poisson’s ratio. Substitution of Eq.
�3� into Eq. �2� and using Eqs. �6� and �7� gives

A1 = 0, A2 =
i

s�1 + l�s��
�8�

for concentrated shear loading, and for concentrated normal load-
ing
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A1 = −
1

s2 , A2 =
�s� + ls2/2�1 − ��

1 + l�s�
1

s2 �9�

with l= ��s+2	s� /	�1−�� being an intrinsic length scale for the
system under consideration. Consequently, the displacements in-
duced by the concentrated loads described above can be obtained
by inserting Eqs. �8� and �9�, respectively, into Eqs. �6� and �7�
and by further applying inverse Fourier integral transform

u11�x1,x2� = −
1 − �

2�	
ln R2 +

1

2�	
�x2 − 2�1 − ��l�g1 �10�

u21�x1,x2� = −
1 − 2�

2�	
tan−1�x2/x1� +

1

2�	
�l�1 − 2�� + x2�g2

�11�

u12�x1,x2� =
1

2�	
	�1 − 2��tan−1
 x2

x1
� +

1

2�1 − ��
x1x2

R2 + �1 − 2��

� x2

2�1 − ��
+ lg2� �12�

u22�x1,x2� = −
1

2�	
	�1 − ��ln R2 −

1

2�1 − ��
x2

2

R2 +
1 − 2�

2�1 − ��
�x2

+ �1 − 2��l�g1� �13�

in which u�� is none other than the surface Green’s function that
represents the �th component of displacement induced by the unit
concentrated surface load along x�, and

R2 = x1
2 + x2

2

g1 = −
exp��ix1 − x2�/l�Ei��− ix1 + x2�/l� + exp�− �ix1 + x2�/l�Ei��ix1 + x2�/l�

2l

g2 =
exp��ix1 − x2�/l�Ei��− ix1 + x2�/l� − exp�− �ix1 + x2�/l�Ei��ix1 + x2�/l�

2il

with Ei� � being the exponential integral function. With expres-
sions �10�–�13� one may easily obtain the fields induced by an
arbitrarily distributed surface traction.

3 Elastic Interaction Between Two Surface Steps
According to Marchenko and Parshin �1�, surface steps can be

modeled by force dipoles acting on a planar surface and the force
components assume the form of

F1
�1� = p1

�1����x1�
�x1

, F2
�1� = p2

�1����x1�
�x1

�14a�

F1
�2� = p1

�2����x1 − d�
�x1

, F2
�2� = p2

�2����x1 − d�
�x1

�14b�

in which pj
�k� is the force dipole strength of step k along xj. The

schematic illustration is plotted in Fig. 1. It can be easily proven
that the interaction energy between the two steps can be obtained
from

�int = −
1

2�
S

��F1
�1�u1

�2� + F1
�2�u1

�1�� + �F2
�1�u2

�2� + F2
�2�u2

�1���dS

�15�

where u�
��� represents the displacement along x� induced by step

�. By combining Eqs. �10�–�15�, the interaction energy between
two steps can be written explicitly as

�int = p�
�1�p�

�2��
2u���d,0�

�x1
2 �16�

4 Numerical Results and Implications
As an example, we consider the two steps are identical and their

dipole components are such that p1
�1�= p1

�2�= p and p2
�1�= p2

�2�=0
�denoted as Case I� or p1

�1�= p1
�2�=0 and p2

�1�= p2
�2�= p �denoted as

Case II�. The interaction energy between two such steps has been
plotted as a function of d / l for �=0.3 in Fig. 2 where �int has
been normalized by �c= p�

�1�p�
�2��2G��

c �d ,0� /�x1
2 �i.e., the interac-

Fig. 1 Schematic illustration of two steps „a… and their force
dipoles „b…

Fig. 2 The normalized interaction energy between two steps
as a function of d / l
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tion energy without the effect of surface elasticity�. Here G��
c is

the conventional surface Green’s functions and can be found in
many textbooks or papers, e.g., Müller and Saúl �12�. From Fig. 2,
it can be seen that �int /�c both in Case I and in Case II increases
with d / l and eventually approach 1, which means that in a certain
range of the steps’ separation, especially when it becomes small,
the interaction energy no longer exhibits the form of d−2 as the
conventional elasticity predicts. Such behavior has been found in
some molecular simulations of interaction between surface steps
�3�. Meanwhile, deviation of the elastic interaction between other
surface defects such as adatoms and vacancies from the result of
conventional elasticity theory for small spacing that has been
found in Ref. �13� may also be attributed partly to the effect of
surface elasticity. It is also noteworthy that for small value of d / l
the effect of surface elasticity on the interaction energy in Case II
is rather insignificant as compared to that in Case I, which may be
considered qualitatively consistent with the results obtained by
Hecquet �14�. Therein, it is found that for dipoles with force com-
ponents only normal to the surface, the surface stress has no effect
on their interaction while it does for dipoles with force compo-
nents parallel to the surface. Consequently, taking into account the
effect of surface elasticity is reasonable in characterizing some
phenomena in surface science, especially when the geometric di-
mension like the distance d in the present work becomes close to
the intrinsic length like l defined by the ratio between the surface
elastic modulus and the bulk elastic modulus. Since according to
Shenoy’s atomic calculation of elastic properties of some surfaces
�15�, l may be well in the range of several angstroms, from the
above results it can be concluded that the effect of surface elas-
ticity may become significant when the distance between the steps
is on the nanometer scale. Such effect has been generally ne-
glected in the investigation of surface evolution and may be
worthwhile for future consideration.
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This paper deals with the first-order numerical analysis of thin
layers. Theoretical results are recalled and compared with nu-
merical data obtained on two classical examples. The effects of
concentrated forces are discussed. �DOI: 10.1115/1.2424716�

1 Introduction
The aim of this study was to perform a first-order asymptotic

and numerical analysis on linear thin layers. The rigidity of the
thin layers is assumed here not to depend on its thickness. During
the last few decades several authors have developed asymptotic
theories applied to thin layers �see Ref. �1��. These problems have
mostly been studied at order zero, and only a few authors have
performed first-order studies �2�. We assume that only the geo-
metrical parameter of the layer �the thickness� tends towards zero,
and, analyze the limit problem using matched asympotic expan-
sions �3�. In this limit problem, the layer vanishes geometrically
and is replaced by an interface. The aim of this study is to check
quantitatively the validity of the theoretical approach. This point
is a crucial one for mechanical engineers because in practice, the
thickness of the thin layer is generally very small.

The paper is organized as follows: in Sec. 2, the mechanical
problem and the theoretical results are presented. Section 3 deals
with two numerical examples. In Sec. 4, we analyze the influence
of the concentrated forces obtained in the theoretical limit prob-
lem. In Sec. 5, we draw some conclusions and discuss the per-
spectives.

2 The Mechanical Problem and Theoretical Results
Let us consider two elastic bodies which are perfectly bonded

with a third one which is very thin. For sake of simplicity, we
work only in two dimensions. The structure is denoted � with
boundary �� and is referred to the local frame �O ,x1 ,x2�. A sur-
face load is applied to the part of the structure �1. The structure is
embedded in part �0. We take �� to denote the part of � such that
�x2 � �� /2 �the adherent� and B� to denote the complementarity
part � /�� �the adhesive�. Segment S is the intersection between
� and the line �x2=0�. We adopt the small perturbations hypoth-

esis and the adhesion between �� and B� is assumed to be perfect.
Note that S is the surface to which the adhesive tends geometri-
cally. The material composing is assumed to be elastic. We take �
and � to denote the Lamé coefficients of the adhesive. Contrary to
more classical studies, the order of magnitude of the stiffness is
assumed to be the same in the adherent and in the adhesive �see
Fig. 1�.

2.1 Presentation of the Problem. In what follows, a jump
across S is denoted by �.� and a jump across the interface S�

between �� and B� is denoted by �.��. The equations of the prob-
lem are written as follows �� denotes the stress tensor and u the
displacement vector�:

div � = 0 in �

�n = F on �1

u = 0 on �0

�u�� = 0 on S�

��n�� = 0 on S� �1�

The constitutive equations are written as follows �e=e�u� denotes
the strain tensor�

� = Ae�u� in ��

� = � tr�e�u��I + 2�e�u� in B� �2�

In the previous equation, A denotes a given elasticity tensor.

2.2 Matched Asymptotic Expansions. We assume that the
solution of the above problem can be expanded into power series
of �. Using the matched asymptotic expansions method �4�, we
introduce internal �Eq. �4�� and external �Eq. �3�� expansions of
the displacement vector u� and the stress tensor �� which are
valid sufficiently far from the edges. The two expansions are as-
sumed to be coincident in a set of intermediate points �Eq. �5��.
We write

u��x1,x2� = �
m=0

�

�mum�x1,x2�, ���x1,x2� = �
m=0

�

�m�m�x1,x2�

�3�

u��x1,x2� = �
m=0

�

�mvm	x1,
x2

�

, ���x1,x2� = �

m=0

�

�m�m	x1,
x2

�


�4�

v0�x1, ± � � = u0�x1,0±�

�0�x1, ± � � = �0�x1,0±�

v1�x1, ± � � = u1�x1,0±� + lim
y→±�

y
�u0

�x2
�x1,0±� �5�

�1�x1, ± � � = �1�x1,0±� + lim
y→±�

y
��0

�x2
�x1,0±�

Let y2=x2 /�.
Introducing these expansions into Eqs. �1� and �2�, we obtain

	ij
n = �ekk

n 
ij + 2�eij
n , n = 0,1

�v j
0

�y2
= 0, j = 1,2

e11
0 =

�v1
0

�x1
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e22
0 =

�v2
1

�y2

e12
0 =

1

2
	 �v2

0

�x1
+

�v1
1

�y2



�	i2
0

�y2
= 0

�	i1
0

�x1
+

�	i2
1

�y2
= 0 �6�

2.3 Asymptotic Results. By integration, Eqs. �5� and �6� �ii�
mean that �ui

0�=0, i=1,2. Likewise, Eqs. �5� and �6� �vi� mean
that ��i2

0 �=0, i=1,2. In conclusion, we have the following order
zero system

�u1
0��x1� = 0 �7a�

�u2
0��x1� = 0 �7b�

��22
0 ��x1� = 0 �7c�

��12
0 ��x1� = 0 �7d�

In the same way, by integration, Eqs. �5� and �6� �i� with n=0 and
�6� �iii-v� mean that the jump in the displacements �ui

1� i=1,2 is
not equal to zero and depends on �i2

0 and �ui
0 /�x1. The corre-

sponding results are given in Eq. �8�.
The jump in the stresses is obtained using Eqs. �5� and �6� �vii�,

and �6� �i� �by derivation�. In conclusion, we have the following
order one system

�u1
1��x1� =

�12
0

�
−

�u2
0

�x1
�8a�

�u2
1��x1� =

�22
0

� + 2�
−

�

� + 2�

�u1
0

�x1
�8b�

��22
1 ��x1� = −

��12
0

�x1
�8c�

��12
1 ��x1� = −

4��� + ��
� + 2�

�2u1
0

�x1
2 −

�

� + 2�

��22
0

�x1
�8d�

Note that the model obtained is nonlocal.

3 Numerical Tests
The aim of this section is to check quantitatively the validity of

the theory. It is crucial to obtain values of the thickness for which
it is possible to substitute the real problem by the limit one. The
computations were performed using the ANSYS �Multiphysics
solver, Plan82 element, plane stress� software program �5�. The
discretization of the thin layer is done by two or four elements in
the thickness and 200 elements in the width. This numerical sec-
tion contains two parts, corresponding to two examples. In the
first part, we observe the jumps in the displacements �u1� and �u2�
and the jumps in the stress vector ��22� and ��12� along the inter-
face zone �based on Eq. �7��. In the second one, we check the
validity of Eq. �8�.

3.1 First Numerical Example

3.1.1 Geometry of the Problem. In this section, we describe
numerical tests performed on a long square bar bonded with a
rigid obstacle �Fig. 2�. The width of the bar was equal to 99 mm
and the thickness of the thin layer was equal to 1 mm. A horizon-
tal load was applied to the whole left part of the structure and a
vertical one was applied to only the upper left nodes of the square
bar. The mechanical data are given in Table 1.

3.1.2 Numerical Synthesis

3.1.2.1 Jump in the displacements at order 0 (Eqs. (7a) and
(7b)). The first step in the numerical test consists of checking that
the values of the jump in the displacements at order zero tend
toward zero. In this example, the jump in the displacements is
equal to the displacement of the upper nodes of the thin layer. It is
confirmed that the displacement is small �see Figs. 4�a� and 4�b��.
The values of the displacements tend toward zero: these values
are in the �2.10−4 ,5 .10−4� mm range with u1 and in the

Fig. 1 The mechanical problem

Fig. 2 First example: square bar bonded with a rigid body „di-
mensions in mm…

Table 1 Mechanical data

Example 1 2
thickness �mm� 1 1

Substrate: Young’s modulus �GPa� 200 200
Substrate: Poisson ratio 0.3 0.3
Thin layer: Young’s modulus �GPa� 160 160
Thin layer: Poisson ratio 0.3 0.3
Total x1 force �N� 1800 1800

�18 nodes� �18 nodes�
Total x2 force �N� −1200 −1000

�60 nodes� �50 nodes�
Finite element 8-node

quadrangle
8-node

quadrangle
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�−3.10−4 ,3 .10−4� mm range with u2. These values are approxi-
mately 100 times smaller than those in the adherent. It is noticed
that in this modeling, contrary to other theories for which the
rigidity of the adhesive is small, the jump in the displacements
tends toward zero.

3.1.2.2 Jump in the stress vector at order 0 (Eqs. (7c) and
(7d)). In the case of the stress vector, we computed three sets of
values �Fig. 3�: the lower and the upper nodes of the layer and the
lower nodes of the body �Figs. 4�c� and 4�d��. The three curves
�denoted inf-adh, sup-adh, and inf-body in Fig. 4� are very similar,
the jump tends towards zero, and it is possible to choose any of
these three values for the following computations. In particular,
the computation of the gradient can be done indifferently on one
of the three surfaces.

3.1.2.3 Jump in the displacements at order 1 (Eqs. (8a) and
(8b)). In this case, the thin layer is bonded directly with a rigid
body and some of the terms in Eqs. �8a� and �8b� can be simpli-
fied. In particular, the jump in the displacement at order zero is
equal to zero as are the displacement and its x1 derivatives. Since
the lower nodes are clamped, the jump in the displacements at
order one is computed as the displacements of the upper nodes in
the thin layer divided by �. In Eq. �8a� the jump in the displace-
ment of u1 at order one is approximately �12 at order zero divided
by � �Fig. 5�a��. In Eq. �8b� the jump in the displacements of u2
at order one is approximately �22 at order zero divided by �
+2� �Fig. 5�b��.

3.1.2.4 Jump in the stress vector at order 1 (Eqs. (8c) and
(8d)). At order one, it can be seen from Fig. 4 that the stresses are
very small. This is computed by dividing the numerical displace-
ment obtained in the upper nodes of the layer by �. Stresses at
order zero are computed in the upper nodes of the layers. For Eqs.
�8c� and �8d�, the jump in the stress vector at order one is taken to
be equal to the difference between the values obtained in the
upper and lower nodes of the layer. Figure 5�c� shows that stress
�12 �denoted str.� is similar to the derivative of �22 �denoted d-str.�
at order zero �upper nodes of the layer� divided by � / ��+2��.
The derivatives of the stresses at order zero are computed in the
upper nodes of the layer. In Fig. 5�d�, we can see that the jump in
the stress �22 at order one is approximately zero as predicted in
Eq. �8c�.

3.1.2.5 Conclusion. In Fig. 5, we have checked the results by
comparing each term of Eqs. �8�. The agreement found to exist
between the curves confirms the validity of the theory presented in
Ref. �2� and developed in this paper. One notes a divergence of
the theory on the edges. From a mathematical point of view, this
theory is valid only in the open set and not in the closed set. This
problem will be taken into account thereafter.

3.2 Second Numerical Example

3.2.1 Geometry of the Problem. In this section, we describe
numerical tests performed on two bars connected with a thin layer
�Fig. 6�. The width of the bars is equal to 99.5 mm and the thick-
ness of the thin layer is equal to 1 mm. The lower bar is clamped
underneath. A horizontal load is applied to the whole left side of
the top bar and a vertical one is applied to the upper left part of
the top bar.

3.2.2 Numerical Synthesis

3.2.2.1 Jump in the displacements at order 0 (Eqs. (7a) and
(7b)). The first step in the numerical validation procedure consists
of checking that the values of the jump in the displacements at
order zero tend toward zero. In this example, the jump in the
displacements is equal to the difference between the displace-
ments of the upper nodes and the lower nodes of the thin layer.
The jump was found to be small �Figs. 7�a� and 7�b��. The
values of the jumps tend to zero. These values are in
the �2.10−4 ,5 .10−4� mm range with u1 and in the
�−2.10−4 ,1 .10−4� mm range with u2.

Fig. 3 First example: three lines of nodes

Fig. 4 Square bar: numerical results on the contact zone: „a…
u1 displacements; „b… u2 displacements; „c… �22 stresses; „d…
�12 stresses „-… lower zone on the adhesive, „. . .… upper zone on
the adhesive, „-.… lower zone on the elastic body…

Fig. 5 Square bar: numerical results on the contact zone: „a…
†u1‡ displacements; „b… †u2‡ displacements; „c… †�12‡ stresses;
„d… †�22‡ stresses „„. . .… jump in the stress, „-… derivative…
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3.2.2.2 Jump in the stress vector at order 0 (Eqs. (7c) and
(7d)). In the case of the stress vector, we computed the stress
difference between the lower and upper nodes of the layer �Figs.
7�c� and 7�d��. The two values were found to be similar and the
jump tends toward zero.

3.2.2.3 Jump in the displacements at order 1 (Eqs. (8a) and
(8b)). In this case, the thin layer is not bonded directly with a rigid
body and the terms in Eqs. �8a� and �8b� are not simplified. The
jump in the displacements at order one is taken to be the com-
puted jump in the displacements divided by �. The derivative of
the displacement �Eqs. �8a� and �8b�� is approximated for the
upper nodes of the thin layer. We compared Eqs. �8a� and �8b�
with the numerical jump in the displacement at order one �denoted
disp. in Fig. 8�. It can be seen from Figs. 8�a� and 8�b� that these
values are very similar.

3.2.2.4 Jump in the stress vector at order 1 (Eqs. (8c) and
(8d)). In Eqs. �8c� and �8d�, the jump in the stress vector at order
one is taken to be equal to the difference between the values in the
upper and lower nodes of the layer. The derivatives of the stresses
at order zero are computed in the upper nodes of the layer. As Fig.
8�c� shows, stress �12 �denoted str.� is similar to the derivative of
�22 �denoted d-str.� at order zero �upper nodes of the layer� di-
vided by � / ��+2�� �Eq. �8d��. In Fig. 8�d�, we can see that the
jump in stress �22 at order one is similar to the values obtained
upon computing the right hand side of Eq. �8c�.

3.2.2.5 Conclusion. The numerical data given in Fig. 8 are
compared with the theoretical results obtained in each term of Eq.
�8�. The good agreement obtained confirms the validity of the
theory proposed in Ref. �2�.

4 Comments on Concentrated Forces at the Edges
As seen in the previous sections �Figs. 4, 5, 7, and 8�, the

results presented in Eq. �8� are no longer valid near the edges. In
this case, it is necessary to include concentrated forces in the
model. In particular, the limit model does not take into account the
singularities of stresses on the edges. In this paragraph, one pre-
sents a way of taking into account partial effects of the singulari-
ties near the edges. Let us consider a small circle centered at the
edge of the thin layer �see Fig. 9�. Using the divergence formula
and Eqs. �1�, �4�, and �6� �i��vii�, we obtain

�
C�

�n +�
D�

�n = 0

�
C�

�1n +�
−1/2

−1/2

	0n = 0

Fig. 6 Second example: two bonded bars „dimensions in mm…

Fig. 7 Two bars: numerical results on the contact zone: „a…
†u1‡ displacements; „b… †u2‡ displacements; „c… †�22‡ stresses;
and „d… †�12‡ stresses

Fig. 8 Two bars: numerical data on the contact zone „a… †u1‡

displacements; „b… †u2‡ displacements „. . . displacements, -
stress…; „c… †�22‡ stresses; „d… †�12‡ stresses „„. . .… jump in the
stress, „-… derivative…

Fig. 9 Concentrated forces
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�
C�

�1n = − 	4��� + ��
� + 2�

�u1
0

�x1
−

�

� + 2�
�22

0 
e1 �9�

Therefore the concentrated forces at the edges P±, denoted F, are

F = − 	4��� + ��
� + 2�

�u1
0

�x1
−

�

� + 2�
�22

0 
�P±�e1 �10�

The validity of these theoretical results can be seen by compar-
ing Eq. �10� with the computed numerical data. We applied to the
limit problem �first example� a concentrated force exerted on the
first line of elements as shown in Eq. �10�. The value of this force
is obtained by performing computations on the real data �see Fig.
10�. In Fig. 11, the limit problem with and without concentrated
forces and the initial problem with the thin layer are compared.
The results show the considerable improvement obtained in the
case involving concentrated forces �Fig. 11�.

5 Conclusion
In this study, we have both developed and numerically vali-

dated an asymptotic model for the interface described in Ref. �2�.
This interface model is nonlocal. Good agreement was obtained
between theoretical and numerical data. One obtains a law that
could be modeled numerically at order 1 by particular cohesive
elements. We now intend to develop a theory on similar lines
dealing with the nonlinear constitutive laws pertaining to the thin
layer, in particular, taking into account damage or heterogeneities
�as in adhesives reinforced by particles�.
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We consider the contact problem for a particular class of com-
pressible hyperelastic materials of harmonic type undergoing fi-
nite plane deformations. Using complex variable techniques, we
derive subsidiary results concerning a half-plane problem corre-
sponding to this class of materials. Using these results, we solve
the contact problem for a harmonic material in the case of a
uniform load acting on a finite area. Finally, we show how we can
then deduce the corresponding results for the case of a point
load. �DOI: 10.1115/1.2711229�
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materials

1 Introduction
The model of a compressible hyperelastic harmonic material

was first proposed by John �1� and subsequently applied by a
number of authors to various problems in finite elasticity. Re-
cently, the analysis of this class of materials has attracted consid-
erable attention in the literature. For example, Knowles and Stern-
berg �2� have considered the singularity induced by certain mixed
boundary conditions in nonlinear elastostatics; Varley and Cum-
berbatch �3� solved the finite deformation problem of an elliptic
hole in a harmonic material �their results showed good agreement
with experimental data for some rubber-like materials�; Abe-
yaratne and Horgan �4� investigated the pressurized hollow sphere
problem in finite elastostatics; Li and Steigmann �5� studied the
finite deformation of an annular membrane induced by the rota-
tion of a rigid hub; Horgan �6� obtained the axisymmetric solu-
tions for compressible nonlinearly elastic solids and Aguiar and
Fosdick �7� analyzed the finite deformation field near a corner
using asymptotic analysis. In these papers, it was found that the-
oretical results based on this model were in good agreement with
experimental data.

Complex variable techniques �8� have been shown to be ex-
tremely powerful and effective tools for the study of problems in
linear plane elasticity. Analogously, complex variable techniques
have been used successfully in the case of finite deformations. In
particular, in Ref. �3�, Varley and Cumberbatch developed a com-
plex variable formulation of a wide class of compressible hyper-

elastic materials of harmonic type. More recently, Ru �9� devel-
oped a simple, yet powerful complex-variable formulation of a
class of problems involving the plane-strain deformations of a set
of compressible hyperelastic materials of harmonic type includ-
ing, in particular, problems involving an interface crack. Based on
Ru’s formulation, Ru et al. �10� investigated the uniformity of
stresses inside an elliptic inclusion in finite plane elastostatics;
Wang et al. �11,12� considered the design of harmonic shapes in
finite elasticity and considered the surface instability of compliant
materials under van der Waals forces, respectively.

The contact problem is one of the most important in solid me-
chanics. It has wide engineering applications, for example, in fric-
tion, lubrication, adhesion etc. In Johnson’s distinguished book,
Contact Mechanics �13�, many typical contact problems have
been included. However, the analogous results for the case of
finite deformation are very rare, particularly in analytical form.

In the present paper, we investigate the contact problem for a
hyperelastic harmonic material. Our paper is organized as follows.
The basic equations describing plane strain deformations of a har-
monic material are summarized in Sec. 2. In Sec. 3, using the
continuation properties of analytical functions, the complex poten-
tial for a half-plane problem is formulated. Finally, in Sec. 4, we
solve contact problems for harmonic materials subjected to a uni-
form traction on a finite region and a point force, respectively.

2 Basic Equations for a Harmonic Material
In this section, we present only a brief review of the equations

governing finite plane �strain� deformations of a harmonic mate-
rial. Further details can be found in Ru �9� and Knowles and
Sternberg �2�.

Let the complex variable z=x1+ ix2 represent the initial coordi-
nates of a material particle in the undeformed configuration, and
w�z�=y1�z�+ iy2�z� the corresponding spatial coordinates in the
deformed configuration. Define the deformation gradient tensor as

Fij =
�yi

�xj
�1�

For a particular class of harmonic materials, the strain energy
density defined with respect to the undeformed unit area can be
expressed by

W = 2��F�I� − J�, F��I� =
1

4�
�I + �I2 − 16��� �2�

where I and J are the scalar invariants of FFT given by

I = �FijFij + 2J, J = �det�F��2 �3�

� is the shear modulus and 1/2���1, ��0 are two material
constants.

According to the formulation given by Ru �9�, the deformation
w�z� can be written in terms of two analytic functions � and � as

iw�z� = ���z� + i��z� +
�z

���z�
�4�

and the complex Piola stress function 	�z� is given by

	�z� = 2�i��� − 1���z� + i��z� +
�z

���z�� �5�

The stress components can be obtained by the Piola stress func-
tion as

− i
12 + 
22 = 	,1, − 
21 + i
11 = 	,2 �6�

Using Eqs. �5� and �6�, we can obtain the stress components on x2
plane as

− i
12 + 
22 = 2�i��� − 1����z� + i���z� +
�

���z�
−

�z

���z�2
���z��

�7�
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3 Complex Potential for a Half-Plane Problem
To solve the contact problem, we use the continuation proper-

ties of analytic functions �8� to formulate the complex potential
for a half-plane harmonic solid. This is the basis on which we
analyze the surface stability, contact mechanics, etc, of the har-
monic solid.

Suppose that a region L of the surface x2=0 of the half plane S+

�x2�0� is unstressed so that

lim
x2→0+

��� − 1����z� + i���z� +
�

���z�
−

�z

���z�2
���z�� = 0 �8�

that is

�� − 1���+�x1� + i��+�x1� +
�

��+�x1�
−

�x1

��+�x1�2
��+�x1� = 0 �9�

Here we use the notation limx2→0+���z�=��+�x1�.
Noting that limx2→0−��z̄�=limx2→0+��z�=�+�x1�. In terms of

the associated functions ��z̄� and ��z̄�, which are analytic in S−

�x2�0�, the boundary condition can be written in alternative form
as

��+�x1� = −
1

�� − 1�
lim

x2→0−
�i���z̄� +

�

���z̄�
−

�z

���z̄�2
���z̄��

�10�

It is natural to extend the definition of �� �z� from S+ to S− by
setting

���z� = ���z�, �z � S+�

���z� = −
1

�� − 1��i���z̄� +
�

���z̄�
−

�z

���z̄�2
���z̄��, �z � S−�

�11�

Since ���z� is continued analytically from S+ into S− across the
boundary x2=0, these equations can be integrated to give

��z� = ��z�, �z � S+�

��z� = −
1

�� − 1��i��z̄� +
�z

���z̄�
�, �z � S−� �12�

Next, we express ��z� �z�S+� in terms of ��z� defined in both S+

into S−, and obtain

i��z� = − �� − 1���z̄� −
�z̄

���z�
, �z � S+� �13�

The displacement can then be expressed as

iw�z� = ���z� − �� − 1���z̄� +
��z − z̄�

���z�
�14�

and the complex Piola stress function 	�z� is given by

	�z� = 2�i��� − 1����z� − ��z̄�� +
��z − z̄�

���z� 	 �15�

The stress components are finally evaluated by

− i
12 + 
22 = 2�i��� − 1�����z� − ���z̄�� −
��z − z̄�
���z�2

���z�	
− 
21 + i
11 = − 2���� − 1�����z� + ���z̄�� +

2�

���z�

+
��z − z̄�
���z�2

���z�	 �16�

These formulae hold for �z�S+�, where ��z� is analytic in both
S+ and S−. Though we formulate the previous results using the
homogeneous boundary condition, it loses no generality when we
treat the above continuation as the stress continuation.

4 Contact Problem
Based on the formulation in Sec. 3, we consider the contact

problem for a harmonic material. For a material occupying the
half plane S+, the stress boundary condition is given by

− i
12 + 
22 = − �p�x1� + is�x1��, �x2 = 0� �17�

where p�x1� is the normal pressure and s�x1� is the shear stress
applied to the boundary. By using the stress expression in Eq.
�16�, we have

��+�x1� − ��−�x1� =
i

2��� − 1�
�p�x1� + is�x1��, �x2 = 0�

�18�

Suppose that the stresses are zero at infinity. This requires,

���z� = �i, �
z
 → �� �19�

where �=�� / �1−��.
If we suppose further that a finite resultant force acts on the

surface, we can obtain the unique solution for Eq. �18� as

���z� =
1

2��� − 1�
1

2
�

−�

�
p�t� + is�t�

t − z
dt + �i �20�

As an example, we consider a uniform pressure p and shear s
acting over the region 
x1
�a with the remainder of the boundary
free �as shown in Fig. 1�. We obtain

���z� =
p + is

2��� − 1�
1

2
ln� z − a

z + a
 + �i �21�

For this case, the stress field is given by

i
22 + 
12

2�
= − 2i�� − 1��p� + is����1 − �2�

+
��p� − is���ei2�1 − ei2�2�

��p� − is��ln�R1

R2

ei��2−�1� − �i�2

Fig. 1 The contact problem in a hyperelastic material sub-
jected to uniform loading
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21 − i
11

2�
= 2�� − 1���p� + is��ln�R1

R2

 + �i�
+

2�

�p� − is��ln�R1

R2

ei��2−�1� − �i

+
��p� − is���ei2�1 − ei2�2�

��p� − is��ln�R1

R2

ei��2−�1� − �i�2
�22�

with

p� + is� =
p + is

2��� − 1�
1

2
, z − a = R1ei�1, z + a = R2ei�2

�23�
These results can be used to obtain the corresponding results for
the case of a point force. In fact, as a→0, let p and s tend to
infinity in such a way that

2ap → Y, 2as → X �24�

where X and Y are constants. Taking the limit in Eq. �21� as a
→0, we have

���z� = −
Y� + iX�

z
+ �i �25�

where

Y� + iX� =
Y + iX

2��� − 1�
1

2

The corresponding stresses are evaluated by

i
22 + 
12

2�
= �� − 1��Y� + iX���1

z
−

1

z̄
 +

��Y� − iX���z − z̄�
�Y� − iX� + �iz̄�2


21 − i
11

2�
= �� − 1��2�i − �Y� + iX���1

z
+

1

z̄
� −

2�z̄

Y� − iX� + z̄�i

+
��Y� − iX���z − z̄�
�Y� − iX� + z̄�i�2 �26�

Though the potentials ���z� in Eqs. �21� and �25� are quite similar
to those in a linearly elastic material �8�, the stress distributions

are quite different, as seen in Eqs. �22� and �26�.

5 Conclusions
Using the complex variable method, we formulate the general

equations for the half-plane problem of a particular class of com-
pressible hyperelastic materials of harmonic type. Subsequently,
we investigate the corresponding contact problems in the case of
finite plane deformations. Stress distributions are obtained in ana-
lytical form for the two cases of a uniform loading on a finite area
and then for a point force. It is clear from Eqs. �22� and �26� that
the stress distributions are significantly different from the corre-
sponding distributions in a linearly elastic solid, illustrating
the influence of the nonlinear behavior of this particular class of
materials.
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Equations �28�, �35b�, �47�, and �C16�, and expression for �1 in Appendix D in the published paper contain typographical errors. The
corrected equations are written as follows:

K̂ = � 2
3�−1/3�−1/2K �28�

�̂ =
E���vtip

K�2 �35b�

E�K� = B1Kb = � 2
3�1/3�1K̂b �47�

�̂0��̂� = �̂1/2 + F00��̂� +
4

��
j=1

n−1

�aiFln��̂,	̂� + bi
 F� 2
3 , �̂,	̂��

	̂=�̂ j

	̂=�̂ j+1

+ F0���̂� �C16�

�1 = b11 2F1�c11,1; 1
2 ;�2� + b12 2F1�c12,1; 1

2 ;�2� + b13 �2
2F1�c13,2; 3

2 ;�2� + b14 �2 − ����� �Appendix D, p. 927�

We are grateful to Dr. Andrew Bunger for bringing to our attention the second error.
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